Dani Lischinski

Learn More
Interactive digital matting, the process of extracting a foreground object from an image based on limited user input, is an important task in image and video editing. From a computer vision perspective, this task is extremely challenging because it is massively ill-posed - at each pixel we must estimate the foreground and the background colors, as well as(More)
Colorization is a computer-assisted process of adding color to a monochrome image or movie. The process typically involves segmenting images into regions and tracking these regions across image sequences. Neither of these tasks can be performed reliably in practice; consequently, colorization requires considerable user intervention and remains a tedious,(More)
We present a new method for rendering high dynamic range images on conventional displays. Our method is conceptually simple, computationally efficient, robust, and easy to use. We manipulate the gradient field of the luminance image by attenuating the magnitudes of large gradients. A new, low dynamic range image is then obtained by solving a Poisson(More)
Many recent computational photography techniques decompose an image into a piecewise smooth base layer, containing large scale variations in intensity, and a residual detail layer capturing the smaller scale details in the image. In many of these applications, it is important to control the spatial scale of the extracted details, and it is often desirable(More)
Image analysis and enhancement tasks such as tone mapping, colorization, stereo depth, and photomontage, often require computing a solution (e.g., for exposure, chromaticity, disparity, labels) over the pixel grid. Computational and memory costs often require that a smaller solution be run over a downsampled image. Although general purpose upsampling(More)
We present a novel method for synthesizing solid textures from 2D texture exemplars. First, we extend 2D texture optimization techniques to synthesize 3D texture solids. Next, the non-parametric texture optimization approach is integrated with histogram matching, which forces the global statistics of the synthesized solid to match those of the exemplar.(More)
We present new techniques for creating photorealistic textured 3D facial models from photographs of a human subject, and for creating smooth transitions between different facial expressions by morphing between these different models. Starting from several uncalibrated views of a human subject, we employ a user-assisted technique to recover the camera poses(More)
This paper presents a new efficient method for recovering reliable local sets of dense correspondences between two images with some shared content. Our method is designed for pairs of images depicting similar regions acquired by different cameras and lenses, under non-rigid transformations, under different lighting, and over different backgrounds. We(More)
We present spectral matting: a new approach to natural image matting that automatically computes a basis set of fuzzy matting components from the smallest eigenvectors of a suitably defined Laplacian matrix. Thus, our approach extends spectral segmentation techniques, whose goal is to extract hard segments, to the extraction of soft matting components.(More)
In this paper, we introduce a novel system for browsing, enhancing, and manipulating casual outdoor photographs by combining them with already existing georeferenced digital terrain and urban models. A simple interactive registration process is used to align a photograph with such a model. Once the photograph and the model have been registered, an abundance(More)