Learn More
Future systems powered by energy scavenging, e.g., wireless sensor nodes, demand μW-range ADCs with no static bias currents in order to have a power dissipation proportional to the sample rate. An ADC that meets these requirements by using a charge-redistribution DAC, a dynamic 2-stage comparator, and a delay-line-based controller is realized in CMOS.(More)
The bandwidth of global on-chip interconnects in modern CMOS processes is limited by their high resistance and capacitance [1]. Repeaters that are used to speed up these interconnects consume a considerable amount of power [2] and area. Recently published techniques [1-4] increase the achievable data rate at the cost of high static power consumption,(More)
—This paper presents a set of circuit techniques to achieve high data rate point-to-point communication over long on-chip RC-limited wire-pairs. The ideal line termination impedances for a flat transfer function with linear phase (pure delay) are derived, using an s-parameter wire-pair model. It is shown that a driver with series capacitance on the one hand(More)
—Crosstalk limits the achievable data rate of global on-chip interconnects on large CMOS ICs. This is especially the case, if low-swing signaling is used to reduce power consumption. Differential interconnects provide a solution for most crosstalk and noise sources, but not for neighbor-to-neighbor crosstalk in a data bus. This neighbor-to-neighbor(More)
—Global on-chip data communication is becoming a concern as the gap between transistor speed and interconnect bandwidth increases with CMOS process scaling. In this paper a low-swing transceiver for 10mm long 0.54μm wide on-chip interconnect is presented, which achieves a similar data rate as previous designs (a few Gb/s), but at much lower power than(More)
Out-of-band noise (OBN) is troublesome in analog circuits that process the output of a noise-shaping audio DAC. It causes slewing in amplifiers and aliasing in sampling circuits like ADCs and class-D amplifiers. Non-linearity in these circuits also causes cross-modulation of the OBN into the audio band. These mechanisms lead to a higher noise level and more(More)
  • 1