Danhui Zhang

Maryka Quik10
Tanuja Bordia7
Xiomara A Perez4
Matthew McGregor4
Vellareddy Anantharam4
10Maryka Quik
7Tanuja Bordia
4Xiomara A Perez
4Matthew McGregor
4Vellareddy Anantharam
Learn More
Recent studies from our laboratory demonstrated that the protein kinase C (PKC) delta isoform is an oxidative stress-sensitive kinase and a key mediator of apoptotic cell death in Parkinson's Disease (PD) models (Eur J Neurosci 18:1387-1401, 2003; Mol Cell Neurosci 25:406-421, 2004). We showed that native PKC delta is proteolytically activated by caspase-3(More)
Tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, can be regulated by phosphorylation at multiple serine residues, including serine-40. In the present study, we report a novel interaction between a key member of the novel PKC family, protein kinase Cdelta (PKCdelta), and TH, in which the kinase modulates dopamine synthesis by(More)
  • Faneng Sun, Vellareddy Anantharam, Danhui Zhang, Calivarathan Latchoumycandane, Arthi Kanthasamy, Anumantha G Kanthasamy
  • 2006
Impairment in ubiquitin-proteasome system (UPS) has recently been implicated in Parkinson's disease, as demonstrated by reduced proteasomal activities, protein aggregation and mutation of several genes associated with UPS. However, experimental studies with proteasome inhibitors failed to yield consensus regarding the effect of proteasome inhibition on(More)
Group A beta-hemolytic streptococcus (GABHS) infections are implicated in neuropsychiatric disorders associated with an increased expression of repetitive stereotyped movements. Anti-streptococcus IgG presumably cross-reacts with elements on basal ganglia cells, modifies their function, and triggers symptoms. IgM may play a unique role in precipitating(More)
Levodopa-induced dyskinesias (LIDs) are a serious complication of levodopa therapy for Parkinson's disease for which there is little treatment. Accumulating evidence shows that nicotinic acetylcholine receptor (nAChR) drugs decrease LIDs in parkinsonian animals. Here, we examined the effect of two β2 nAChR agonists, ABT-089 and ABT-894, that previously were(More)
Manganese (Mn) exposure causes manganism, a neurological disorder similar to Parkinson's disease. However, the cellular mechanism by which Mn impairs the dopaminergic neurotransmitter system remains unclear. We previously demonstrated that caspase-3-dependent proteolytic activation of protein kinase C delta (PKCδ) plays a key role in Mn-induced apoptotic(More)
Previous studies in Parkinsonian rats and monkeys have shown that β2-selective nicotinic acetylcholine receptor (nAChR) agonists reduce l-Dopa-induced dyskinesias (LIDs), a serious complication of l-Dopa therapy for Parkinson's disease. Since rodent studies also suggested an involvement of α7 nAChRs in LIDs, we tested the effect of the potent, selective α7(More)
Abnormal involuntary movements or dyskinesias are a serious complication of long-term l-DOPA treatment of Parkinson's disease, for which there are few treatment options. Accumulating preclinical data show that nicotine decreases l-DOPA-induced dyskinesias (LIDs), suggesting that it may be a useful antidyskinetic therapy for Parkinson's disease. Here, we(More)
Although 3,4-dihydroxyphenylalanine (levodopa) is the gold-standard treatment for Parkinson's disease, it can lead to disabling dyskinesias. Previous work demonstrated that nicotine reduces levodopa-induced dyskinesias (LIDs) in several parkinsonian animal models. The goal of this study was to determine whether the duration of nicotine administration(More)
L-dopa-induced dyskinesias (LIDs) are a serious complication of L-dopa therapy for Parkinson's disease. Emerging evidence indicates that the nicotinic cholinergic system plays a role in LIDs, although the pathways and mechanisms are poorly understood. Here we used optogenetics to investigate the role of striatal cholinergic interneurons in LIDs. Mice(More)