Danhong Wang

Learn More
The fact that people think or behave differently from one another is rooted in individual differences in brain anatomy and connectivity. Here, we used repeated-measurement resting-state functional MRI to explore intersubject variability in connectivity. Individual differences in functional connectivity were heterogeneous across the cortex, with(More)
Individual differences in brain metrics, especially connectivity measured with functional MRI, can correlate with differences in motion during data collection. The assumption has been that motion causes artifactual differences in brain connectivity that must and can be corrected. Here we propose that differences in brain connectivity can also represent a(More)
Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior(More)
The capacity to identify the unique functional architecture of an individual's brain is a crucial step toward personalized medicine and understanding the neural basis of variation in human cognition and behavior. Here we developed a cortical parcellation approach to accurately map functional organization at the individual level using resting-state(More)
The connectivity architecture of the human brain varies across individuals. Mapping functional anatomy at the individual level is challenging, but critical for basic neuroscience research and clinical intervention. Using resting-state functional connectivity, we parcellated functional systems in an "embedding space" based on functional characteristics(More)
Intrinsic functional connectivity detected by functional MRI (fMRI) provides a useful but indirect approach to study the organization of human brain systems. An unresolved question is whether functional connectivity measured by resting-state fMRI reflects anatomical connections. In this study, we used the well-characterized anatomy of cerebrocerebellar(More)
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association(More)
A fundamental characteristic of neural circuits is the capacity for plasticity in response to experience. Neural plasticity is associated with the development of chronic pain disorders. In this study, we investigated 1) brain resting state functional connectivity (FC) differences between patients with chronic low back pain (cLBP) and matched healthy(More)
IMPORTANCE Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional(More)
Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently,(More)