Learn More
The fact that people think or behave differently from one another is rooted in individual differences in brain anatomy and connectivity. Here, we used repeated-measurement resting-state functional MRI to explore intersubject variability in connectivity. Individual differences in functional connectivity were heterogeneous across the cortex, with(More)
The capacity to identify the unique functional architecture of an individual's brain is a crucial step toward personalized medicine and understanding the neural basis of variation in human cognition and behavior. Here we developed a cortical parcellation approach to accurately map functional organization at the individual level using resting-state(More)
The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association(More)
A fundamental characteristic of neural circuits is the capacity for plasticity in response to experience. Neural plasticity is associated with the development of chronic pain disorders. In this study, we investigated 1) brain resting state functional connectivity (FC) differences between patients with chronic low back pain (cLBP) and matched healthy(More)
Intrinsic functional connectivity detected by functional MRI (fMRI) provides a useful but indirect approach to study the organization of human brain systems. An unresolved question is whether functional connectivity measured by resting-state fMRI reflects anatomical connections. In this study, we used the well-characterized anatomy of cerebrocerebellar(More)
Individual differences in brain metrics, especially connectivity measured with functional MRI, can correlate with differences in motion during data collection. The assumption has been that motion causes artifactual differences in brain connectivity that must and can be corrected. Here we propose that differences in brain connectivity can also represent a(More)
Asymmetry of the human cerebellum was investigated using intrinsic functional connectivity. Regions of functional asymmetry within the cerebellum were identified during resting-state functional MRI (n = 500 subjects) and replicated in an independent cohort (n = 500 subjects). The most strongly right lateralized cerebellar regions fell within the posterior(More)
Epileptic spike is an indicator of hyper-excitability and hyper-synchrony of neural networks. While cognitive deficit in epilepsy is a common observation, how spikes transiently influence brain oscillations, especially those essential for cognitive functions, remains obscure. Here we aimed to quantify the transient impacts of sporadic spikes on theta(More)
mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many of the body's systems, particularly the brain and nervous system (encephalo-) and muscles (myopathy). The signs and symptoms of this disorder most often appear in(More)
Imaging studies suggest that individual differences in cognition and behavior might relate to differences in brain connectivity, particularly in the higher order association regions. Understanding the extent to which two brains can differ is crucial in clinical and basic neuroscience research. Here we highlight two major sources of variance that contribute(More)