Learn More
In this paper we propose and analyze three parallel hybrid extragradient methods for finding a common element of the set of solutions of equilibrium problems involving pseudomonotone bifunctions and the set of fixed points of nonexpansive mappings in a real Hilbert space. Based on parallel computation we can reduce the overall computational effort under(More)
The paper introduces and analyzes the convergence of a new iterative algorithm for approximating solutions of equilibrium problems involving strongly pseudomonotone and Lipschitz-type bifunctions in Hilbert spaces. The algorithm uses a stepsize sequence which is non-increasing, diminishing, and non-summable. This leads to the main advantage of the(More)
  • 1