Dang Van Hieu

Learn More
In this paper we propose several modified hybrid projection methods for solving common solutions to variational inequality problems involving monotone and Lipschitz continuous operators. Based on differently constructed half-spaces, the proposed methods reduce the number of projections onto feasible sets as well as the number of values of operators needed(More)
In this paper we propose and analyze three parallel hybrid extragradient methods for finding a common element of the set of solutions of equilibrium problems involving pseudomonotone bifunctions and the set of fixed points of nonexpansive mappings in a real Hilbert space. Based on parallel computation we can reduce the overall computational effort under(More)
In this paper, we study the weak and strong convergence of two algorithms for solving Lipschitz continuous and monotone variational inequalities. The algorithms are inspired by Tseng’s extragradient method and the viscosity method with Armijo-like step size rule. The main advantages of our algorithms are that the construction of solution approximations and(More)
The paper introduces and analyzes the convergence of a new iterative algorithm for approximating solutions of equilibrium problems involving strongly pseudomonotone and Lipschitz-type bifunctions in Hilbert spaces. The algorithm uses a stepsize sequence which is non-increasing, diminishing, and non-summable. This leads to the main advantage of the(More)
In this paper, three parallel hybrid subgradient extragradient algorithms are proposed for finding a common solution of a finite family of equilibrium problems in Hilbert spaces. The proposed algorithms originate from previously known results for variational inequalities and can be considered as modifications of extragradient methods for equilibrium(More)
  • 1