Learn More
Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. It is typically addressed with highly accurate quantum mechanical computations on a small set of candidate structures, or with empirical rules that have been extracted from a large amount of experimental information, but have limited(More)
Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted(More)
The fungal pathogen Monilinia fructicola causes blossom blight and fruit brown rot of stone fruits in California. In this study, spore densities in the air were monitored in six orchard/year combinations with Burkard spore traps. A real-time PCR assay was developed to efficiently quantify the dynamics of spore density in these orchards during the growing(More)
In this work, we performed density functional theory (DFT) calculations with inclusion of Hubbard U corrections for the transition metal d-electrons, to investigate stability and electrocatalytic activities of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) for the ABO3 (A = La; B = Cr, Mn, Fe, Co, and Ni) (001) surfaces. We showed(More)
Recent studies have shown that high pressure (P) induces the metallization of the Fe(2+)-O bonding, the destruction of magnetic ordering in Fe, and the high-spin (HS) to low-spin (LS) transition of Fe in silicate and oxide phases at the deep planetary interiors. Hematite (Fe(2)O(3)) is an important magnetic carrier mineral for deciphering planetary(More)
The A(n+1)B(n)O(3n+1) Ruddlesden-Popper homologous series offers a wide variety of functionalities including dielectric, ferroelectric, magnetic and catalytic properties. Unfortunately, the synthesis of such layered oxides has been a major challenge owing to the occurrence of growth defects that result in poor materials behaviour in the higher-order(More)
Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its(More)
The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design(More)
Recent advances in computational materials science present novel opportunities for structure discovery and optimization, including uncovering of unsuspected compounds and metastable structures, electronic structure, surface, and nano-particle properties. The practical realization of these opportunities requires systematic generation and classification of(More)
Materials displaying the remarkable combination of high electrical conductivity and optical transparency already from the basis of many important technological applications, including flat panel displays, solar energy capture and other opto-electronic devices. Here we present the basic materials physics of these important materials centred on the nature of(More)