Learn More
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. ABSTRACT: Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on(More)
Executive summary Foreword: Public awareness of solid-state chemistry, or more broadly solid-state science and technology rapidly grew along with the transistor revolution and the development of the integrated circuit. We are now at the halfway point in the solid state century [Scientific American The Solid-State Century 1997;8(1) [special issue]], a period(More)
Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into(More)
To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we(More)
A structural characterization of the hydrated form of the brownmillerite-type phase Ba 2 In 2 O 5 , Ba 2 In 2 O 4 (OH) 2 , is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H 2 O fill the inherent O vacancies of the brownmillerite structure, one of(More)
Technological applications of novel metastable materials are frequently inhibited by abundant defects residing in these materials. Using first-principles methods, we investigate the defect thermodynamics and phase segregation in the technologically important metastable alloy GaAsBi. Our calculations predict defect energy levels in good agreement with those(More)
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using(More)
Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of(More)
  • 1