Learn More
Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have(More)
The miniaturization of measurement systems currently used to characterize the polarization state of light is limited by the bulky optical components used such as polarizers and waveplates. We propose and experimentally demonstrate a simple and compact approach to measure the ellipticity and handedness of the polarized light using an ultrathin (40 nm)(More)
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape(More)
The salicylaldehyde was used as monomer to modify chitosan. The resin material is characterized by means of IR. In ethanol solvent, Schiff base reaction between chitosan and salicylaldehyde was carried out, the salicylicaldehyde grafted chitosan (S-CTS) was generated. The effects of the reaction temperature, the reaction time, the reactant ratio, the system(More)
Metasurface holograms are typically fabricated on rigid substrates. Here we experimentally demonstrate broadband, flexible, conformable, helicity multiplexed metasurface holograms operating in the visible range, offering increased potential for real life out-of-the-lab applications. Two symmetrically distributed holographic images are obtained when(More)
  • 1