Dana Michael Blumenthal

Learn More
Soil nitrogen enrichment and consequent vigorous weed growth are thought to hinder the restoration of tallgrass prairie. Adding carbon to the soil may facilitate prairie restoration by inducing immobilization of plant-available nitrogen. Early attempts to use this method, however, have had mixed results. Success of C addition depends on three conditions:(More)
Understanding why some exotic species become invasive is essential to controlling their populations. This review discusses the possibility that two mechanisms of invasion, release from natural enemies and increased resource availability, may interact. When plants invade new continents, they leave many herbivores and pathogens behind. Species most regulated(More)
In his or her Perspective, Blumenthal discusses how plants from high-resource habitats are often poorly defended, nutritious, and strongly regulated by enemies. Consequently, these species may benefit the most by entering new habits to escape their natural enemies. This hypothesis predicts that high-resource invasive species may be particularly susceptible(More)
Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to(More)
Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts' native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their(More)
A fundamental assumption in invasion biology is that most invasive species exhibit enhanced performance in their introduced range relative to their home ranges. This idea has given rise to numerous hypotheses explaining "invasion success" by virtue of altered ecological and evolutionary pressures. There are surprisingly few data, however, testing the(More)
Long-term responses of terrestrial ecosystems to the combined effects of warming and elevated CO2 (eCO2) will likely be regulated by N availability. The stock of soil N determines availability for organisms, but also influences loss to the atmosphere or groundwater. eCO2 and warming can elicit changes in soil N via direct effects on microbial and plant(More)
© The Ecological Society of America www.frontiersinecology.org E are experiencing not only gradual shifts in mean climate conditions but also dramatic changes in climate variability and prevalence of extreme climatic events (ECEs). ECEs such as droughts, floods, severe storms, and heat waves are changing in frequency, magnitude, timing, and duration,(More)
Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available resources in their native range are particularly(More)
The "evolution of increased competitive ability" (EICA) hypothesis predicts that exotic species will adapt to reduced herbivore pressure by losing costly defenses in favor of competitive ability. Previous studies often support the prediction that plants from exotic populations will be less well defended than plants from native populations. However, results(More)