Learn More
Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization(More)
The opportunistic pathogen Pseudomonas aeruginosa causes a variety of acute and chronic infections. We identified a gene whose inactivation results in attenuation of virulence due to premature activation of genes involved in biofilm formation and coordinate repression of genes required for initial colonization. This gene, retS, encodes a hybrid sensor(More)
The MglA protein is the only known regulator of virulence gene expression in Francisella tularensis, yet it is unclear how it functions. F. tularensis also contains an MglA-like protein called SspA. Here, we show that MglA and SspA cooperate with one another to control virulence gene expression in F. tularensis. Using a directed proteomic approach, we show(More)
Historically, the first six recorded cholera pandemics occurred between 1817 and 1923 and were caused by Vibrio cholerae O1 serogroup strains of the classical biotype. Although strains of the El Tor biotype caused sporadic infections and cholera epidemics as early as 1910, it was not until 1961 that this biotype emerged to cause the 7th pandemic, eventually(More)
The 92-kDa type IV collagenase (MMP-9) contributes to tumor invasion and metastases and strategies to down-regulate its expression could ultimately be of clinical utility. Although the expression of this collagenase is regulated by numerous growth factors, the signaling pathways that transduce these signals are fewer in number and therefore represent(More)
Protein disulfide bond formation contributes to the folding and activity of many exported proteins in bacteria. However, information about disulfide bond formation is limited to only a few bacterial species. We used a multifaceted bioinformatic approach to assess the capacity for disulfide bond formation across this biologically diverse group of organisms.(More)
Ferritin, the main iron-storage protein, is composed of two partially homologous subunits, heavy (H) and light (L), with MrS of 21,000 and 19,000, respectively. We have isolated a cDNA clone for human ferritin H chains by screening a human lymphocyte cDNA library with synthetic oligodeoxyribonucleotides. The oligonucleotide sequences were derived from two(More)
Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain gamma-carboxylation of many blood coagulation factors. Here, we report the 3.6 A crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an(More)
The ATPase SecA drives the post-translational translocation of proteins through the SecY channel in the bacterial inner membrane. SecA is a dimer that can dissociate into monomers under certain conditions. To address the functional importance of the monomeric state, we generated an Escherichia coli SecA mutant that is almost completely monomeric (>99%),(More)
  • John R. McGill, Susau L. Naylor, +5 authors James W. Drysdale
  • 1987
In humans, the H (heavy) and L (light) chains of the iron-storage protein ferritin, are derived from multigene families. We have examined the chromosomal distribution of these H and L sequences by Southern analysis of hybrid cell DNA and by chrosomal in situ hybridization. Our results show that human ferritin H genes and related sequences are found on at(More)