Learn More
The hypothesis of fetal origins of adult disease posits that early developmental exposures involve epigenetic modifications, such as DNA methylation, that influence adult disease susceptibility. In utero or neonatal exposure to bisphenol A (BPA), a high-production-volume chemical used in the manufacture of polycarbonate plastic, is associated with higher(More)
Genistein, the major phytoestrogen in soy, is linked to diminished female reproductive performance and to cancer chemoprevention and decreased adipose deposition. Dietary genistein may also play a role in the decreased incidence of cancer in Asians compared with Westerners, as well as increased cancer incidence in Asians immigrating to the United States.(More)
Oncogenic human papillomaviruses (HPV) are associated with nearly all cervical cancers and are increasingly important in the etiology of oropharyngeal tumors. HPV-associated head and neck squamous cell carcinomas (HNSCC) have distinct risk profiles and appreciate a prognostic advantage compared to HPV-negative HNSCC. Promoter hypermethylation is widely(More)
Traditional studies on the combined effects of genetics and the environment on individual variation in disease susceptibility primarily focus on single nucleotide polymorphisms that influence toxicant uptake and metabolism. A growing body of evidence, however, suggests that epigenetic mechanisms of gene regulation, such as DNA methylation and chromatin(More)
Transient environmental exposures during mammalian development can permanently alter gene expression and metabolism by influencing the establishment of epigenetic gene regulatory mechanisms. The genomic characteristics that confer such epigenetic plasticity upon specific loci, however, have not been characterized. Methyl donor supplementation of female mice(More)
Epigenetics is the study of the heritable changes in gene expression that occur without a change in the DNA sequence itself. These heritable epigenetic changes include chromatin folding and attachment to the nuclear matrix, packaging of DNA around nucleosomes, histone modifications, and DNA methylation. The epigenome is particularly susceptible to(More)
Environmental influence on developmental plasticity impacts a wide diversity of animal life from insects to humans. We now understand the epigenetic basis for many of these altered phenotypes. The five environmental factors of nutrition, behavior, stress, toxins, and stochasticity work individually and in concert to affect the developing epigenome. During(More)
Evidence supports a role for epigenetic mechanisms in the pathogenesis of late-onset Alzheimer's disease (LOAD), but little has been done on a genome-wide scale to identify potential sites involved in disease. This study investigates human postmortem frontal cortex genome-wide DNA methylation profiles between 12 LOAD and 12 cognitively normal age- and(More)
The development of adult-onset diseases is influenced by perinatal exposure to altered environmental conditions. One such exposure, bisphenol A (BPA), has been associated with obesity and diabetes, and consequently labeled an obesogen. Using an isogenic murine model, we examined the effects of perinatal exposure through maternal diet to 50 ng (n=20), 50 μg(More)
Environmental threats to children's health--especially low-level lead exposure--are complex and multifaceted; consequently, mitigation of these threats has proven costly and insufficient and has produced economic and racial disparities in exposure among populations. Policy makers, public health officials, child advocates, and others currently lack the(More)