Learn More
NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for(More)
Extracellular signal-regulated kinase (ERK) signaling is important for neuronal synaptic plasticity. We report here that the protein kinase ribosomal S6 kinase (RSK)2, a downstream target of ERK, uses a C-terminal motif to bind several PDZ domain proteins in heterologous systems and in vivo. Different RSK isoforms display distinct specificities in their(More)
We report the results of a genetic screen to identify molecules important for synapse formation and/or maintenance. siRNAs were used to decrease the expression of candidate genes in neurons, and synapse development was assessed. We surveyed 22 cadherin family members and demonstrated distinct roles for cadherin-11 and cadherin-13 in synapse development. Our(More)
Although transcription factors that repress gene expression play critical roles in nervous system development, their mechanism of action remains to be understood. Here, we report that the Olig-related transcription factor Bhlhb5 (also known as Bhlhe22) forms a repressor complex with the PR/SET domain protein, Prdm8. We find that Bhlhb5 binds to(More)
  • Citation Ross, Sarah E, Alejandra E Mccord, Cynthia Jung, Denize Atan, Stephanie I Mok +10 others
  • 2012
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. SUMMARY Although transcription factors that repress gene expression play critical roles in nervous system development, their mechanism of action remains to be understood. Here we report that the Olig-related transcription factor Bhlhb5(More)
  • 1