Dan T Bergstralh

Learn More
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main(More)
The Drosophila follicular epithelium, which surrounds developing egg chambers, is a well-established model for studying epithelial polarity because it is continuously generated from adult stem cells, making it easy to generate homozygous mutant clones in a heterozygous background. Mutant clones are usually marked by the loss of Green Fluorescent Protein(More)
Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types(More)
Histamine is an important mediator in the development of allergic reactions. Only a small subset of human cell types is able to produce histamine. No previous studies have shown that human neutrophils are among them. The present work was undertaken to analyze whether human neutrophils produce histamine, and to determine what agonists are involved in(More)
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is(More)
The angle of cell division is critical in at least two contexts. It can determine cell fate, as it does in developing neural tissue. It can also dictate tissue architecture, as it does in many epithelia. One way to ensure the correct angle of cell division is through controlled orientation of the spindle at metaphase. What happens when that control is lost?(More)
In animal cells, mitotic spindles are oriented by the dynein/dynactin motor complex, which exerts a pulling force on astral microtubules. Dynein/dynactin localization depends on Mud/NUMA, which is typically recruited to the cortex by Pins/LGN. In Drosophila neuroblasts, the Inscuteable/Baz/Par-6/aPKC complex recruits Pins apically to induce vertical spindle(More)
Department of Physiology, Development and Neuroscience, Anatomy Building, University of Cambridge, Cambridge, CB2 3DY, UK, Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14627, USA Department of Physics & Astronomy and Department of Biology, University of Rochester, Rochester NY, 14627, USA, School of Mathematics(More)
Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line(More)
  • 1