Learn More
Leaf N and P stoichiometry covaries with many aspects of plant biology, yet the drivers of this trait at biogeographic scales remain uncertain. Recently we reported the patterns of leaf C and N based on systematic census of 213 species over 199 research sites in the grassland biomes of China. With the expanded analysis of leaf P, here we report patterns of(More)
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive(More)
Nitrogen (N) and carbon-nitrogen (C:N) ratio are key foliar traits with great ecological importance, but their patterns across biomes have only recently been explored. We conducted a systematic census of foliar C, N and C:N ratio for 213 species, from 41 families over 199 research sites across the grassland biomes of China following the same protocol, to(More)
Plant diversity generally promotes biomass production, but how the shape of the response curve changes with time remains unclear. This is a critical knowledge gap because the shape of this relationship indicates the extent to which loss of the first few species will influence biomass production. Using two long-term (≥13 years) biodiversity experiments, we(More)
Land use intensification can greatly reduce species richness and ecosystem functioning. However, species richness determines ecosystem functioning through the diversity and values of traits of species present. Here, we analyze changes in species richness and functional diversity (FD) at varying agricultural land use intensity levels. We test hypotheses of(More)
In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of(More)
Assessing the influence of climate, soil fertility, and species identity on leaf trait relationships is crucial for understanding the adaptations of plants to their environment and for interpreting leaf trait relationships across spatial scales. In a comparative field study of 171 plant species in 174 grassland sites across China, we examined the(More)
Although broad-scale inter-specific patterns of leaf traits are influenced by climate, soil, and taxonomic identity, integrated assessments of these drivers remain rare. Here, we quantify these drivers in a field study of 171 plant species in 174 sites across Chinese grasslands, including the Tibetan Plateau, Inner Mongolia, and Xinjiang. General linear(More)
Recent studies assessing the role of biological diversity for ecosystem functioning indicate that the diversity of functional traits and the evolutionary history of species in a community, not the number of taxonomic units, ultimately drives the biodiversity--ecosystem-function relationship. Here, we simultaneously assessed the importance of plant(More)
In experimental plant communities, relationships between biodiversity and ecosystem functioning have been found to strengthen over time, a fact often attributed to increased resource complementarity between species in mixtures and negative plant-soil feedbacks in monocultures. Here we show that selection for niche differentiation between species can drive(More)