#### Filter Results:

#### Publication Year

1984

2013

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Dan Edidin, William Graham
- 1996

The purpose of this paper is to develop an equivariant intersection theory for actions of linear algebraic groups on algebraic schemes. The theory is based on our construction of equivariant Chow groups. They are algebraic analogues of equivariant cohomology groups which have all the functorial properties of ordinary Chow groups. In addition, they enjoy… (More)

- Radu Balan, Pete Casazza, Dan Edidin, Charles K. Chui
- 2006

We will construct new classes of Parseval frames for a Hilbert space which allow signal reconstruction from the absolute value of the frame coefficients. As a consequence, signal reconstruction can be done without using phase or its estimation. This verifies a longstanding conjecture of the speech processing community.

The primary goal of this paper is to develop fast algorithms for signal reconstruction from magnitudes of frame coefficients. This problem is important to several areas of research in signal processing, especially speech recognition technology, as well as state tomography in quantum theory. We present linear reconstruction algorithms for tight frames… (More)

- DAN EDIDIN, WILLIAM GRAHAM
- 2000

- DAN EDIDIN, WILLIAM GRAHAM
- 1998

We analyze a fundamental question in Hilbert space frame theory: What is the optimal decomposition of a Parseval frame? We will see that this question impacts several famous unsolved problems in different areas of mathematics. As a step towards the solution of this question, we give a new identity which holds for all Parseval frames.

A complex frame is a collection of vectors that span C M and define measurements , called intensity measurements, on vectors in C M. In purely mathematical terms, the problem of phase retrieval is to recover a complex vector from its intensity measurements, namely the modulus of its inner product with these frame vectors. We show that any vector is uniquely… (More)

- DAN EDIDIN, ANGELO VISTOLI
- 2008

A natural question is to determine which algebraic stacks are qoutient stacks. In this paper we give some partial answers and relate it to the old question of whether, for a scheme X, the natural map from the Brauer goup (equivalence classes of Azumaya algebras) to the cohomological Brauer group (the torsion subgroup of H 2 (X, G m) is surjective.

- RADU BALAN, PETE CASAZZA, DAN EDIDIN
- 2005

We will construct new classes of Parseval frames for a Hilbert space which allow signal reconstruction from the absolute value of the frame coefficients. As a consequence, signal reconstruction can be done without using noisy phase or its estimation. This verifies a longstanding conjecture of the speech processing community.

- Dan Edidin, William Graham
- 2008

Let G be a reductive algebraic group over an algebraically closed field k. An algebraic characteristic class of degree i for principal G-bundles on schemes is a function c assigning to each principal G-bundle E → X an element c(E) in the Chow group A i X, natural with respect to pullbacks. These classes are analogous to topological characteristic classes… (More)