Learn More
—Self-assembly is expected to become a dominant fabrication technique for the nanodevices and systems of the future. Traditional, or passive, self-assembly techniques have great difficulty in producing the asymmetric structures needed by the applications. This paper discusses self-assembly methods that use active assembly agents (robots). It shows that(More)
This paper introduces the concept of a temporal occupancy grid as a method for modeling and classifying spatial areas according to the time properties of their occupancy. The method extends the idea of occupancy grids[1] by considering occupancy over a number of different timescales. This paper presents the basic formalism and its implementation using(More)
Self-assembly of active, robotic agents, rather than of passive agents such as molecules, is an emerging research field that is attracting increasing attention. Active self-assembly techniques are especially attractive at very small spatial scales, where alternative construction methods are unavailable or have severe limitations. Building nanos-tructures by(More)
—Direct-writing lithographic processes such as electron-beam lithography or techniques based on Scanning Probe Microscopy (SPM) are sequential, and therefore have a low throughput. This paper discusses parallel approaches to SPM lithography that use multiple tips to achieve high throughputs. Algorithms are presented for planning the motion of an SPM(More)
Interactive manipulation of nanoparticles by mechanically pushing them with the tip of an AFM (Atomic Force Microscope) is now done routinely at many laboratories around the world. However, a human in the loop introduces significant inaccuracies and results in a very slow process, mostly because of the need for locating the particles before and after(More)
  • 1