Dan-Anders Jirenhed

Learn More
Associative learning in the cerebellum underlies motor memories and probably also cognitive associations. Pavlovian eyeblink conditioning, a widely used experimental model of such learning, depends on the cerebellum, but the memory locus within the cerebellum as well as the underlying mechanisms have remained controversial. To date, crucial information on(More)
Classical blink conditioning is known to depend critically on the cerebellum and the relevant circuitry is gradually being unravelled. Several lines of evidence support the theory that the conditioned stimulus is transmitted by mossy fibers to the cerebellar cortex whereas the unconditioned stimulus is transmitted by climbing fibers. This view has been(More)
The standard view of the mechanisms underlying learning is that they involve strengthening or weakening synaptic connections. Learned response timing is thought to combine such plasticity with temporally patterned inputs to the neuron. We show here that a cerebellar Purkinje cell in a ferret can learn to respond to a specific input with a temporal pattern(More)
This paper explores the possibility of providing robots with an ‘inner world’ based on internal simulation of perception rather than an explicit representational world model. First a series of initial experiments is discussed, in which recurrent neural networks were evolved to control collision-free corridor following behavior in a simulated Khepera robot(More)
Cerebellar learning requires context information from mossy fibers and a teaching signal through the climbing fibers from the inferior olive. Although the inferior olive fires in bursts, virtually all studies have used a teaching signal consisting of a single pulse. Following a number of failed attempts to induce cerebellar learning in decerebrate ferrets(More)
According to a widely held assumption, the main mechanism underlying motor learning in the cerebellum, such as eyeblink conditioning, is long-term depression (LTD) of parallel fibre to Purkinje cell synapses. Here we review some recent physiological evidence from Purkinje cell recordings during conditioning with implications for models of conditioning. We(More)
Many forms of learning require temporally ordered stimuli. In Pavlovian eyeblink conditioning, a conditioned stimulus (CS) must precede the unconditioned stimulus (US) by at least about 100 ms for learning to occur. Conditioned responses are learned and generated by the cerebellum. Recordings from the cerebellar cortex during conditioning have revealed(More)
Classical conditioning of motor responses, such as the eyeblink response, is an experimental model of associative learning and of adaptive timing of movements. A conditioned blink will have its maximum amplitude near the expected onset of the unconditioned blink-eliciting stimulus and it adapts to changes in the interval between the conditioned and(More)
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or "Purkinje cell CRs" to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This(More)
Pavlovian eyeblink conditioning is a useful experimental model for studying adaptive timing, an important aspect of skilled movements. The conditioned response (CR) is precisely timed to occur just before the onset of the expected unconditioned stimulus (US). The timing can be changed immediately, however, by varying parameters of the conditioned stimulus(More)