Learn More
A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically(More)
Neuronal intranuclear inclusions are found in the brains of patients with Huntington's disease and form from the polyglutamine-expanded N-terminal region of mutant huntingtin. To explore the properties of inclusions and their involvement in cell death, mouse clonal striatal cells were transiently transfected with truncated and full-length human wild-type(More)
Neurons in Huntington's disease exhibit selective morphological and subcellular alterations in the striatum and cortex. The link between these neuronal changes and behavioral abnormalities is unclear. We investigated relationships between essential neuronal changes that predict motor impairment and possible involvement of the corticostriatal pathway in(More)
The morphological picture of primate phylogeny has not unambiguously identified the nearest outgroup of Anthropoidea and has not resolved the branching pattern within Hominoidea. The molecular picture provides more resolution and clarifies the systematics of Hominoidea. Protein and DNA evidence divides Hominoidea into Hylobatidae (gibbons) and Hominidae,(More)
Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA(More)
An integrated human-mouse positional candidate approach was used to identify the gene responsible for the phenotypes observed in a mouse model of Niemann-Pick type C (NP-C) disease. The predicted murine NPC1 protein has sequence homology to the putative transmembrane domains of the Hedgehog signaling molecule Patched, to the cholesterol-sensing regions of(More)
We have used RNA in situ hybridization to study the regional expression of the Huntington's disease gene (HD) and its rat homologue in brain and selected nonneural tissues. The HD transcript was expressed throughout the brain in both rat and human, especially in the neurons of the dentate gyrus and pyramidal neurons of the hippocampal formation, cerebellar(More)
Mitochondrial defects, which occur in the brain of late-stage Huntington's disease (HD) patients, have been proposed to underlie the selective neuronal loss in the disease. To shed light on the possible role of mitochondrial energy impairment in the early phases of HD pathophysiology, we carried out Golgi impregnation and quantitative(More)
Several neuroactive metabolites of the kynurenine pathway of tryptophan degradation have been speculatively linked to the pathophysiology of Huntington's Disease (HD). Here we demonstrate that the levels of two of these metabolites, the free radical generator 3-hydroxykynurenine (3HK) and the neuroprotectant kynurenate (KYNA), are increased in the(More)
Phylogenetic analysis of extensive nucleotide sequence data from primate beta-globin gene clusters elucidates the systematics and evolution of the order Primates and reveals that rates of accumulation of mutations vary by as much as a factor of seven among different primate lineages. The picture of primate phylogeny from DNA sequences clarifies many(More)