Damjan Pelc

  • Citations Per Year
Learn More
Using a unique home-made cell for four-contact impedance spectroscopy of conductive liquid samples, we establish the existence of two low frequency conductivity relaxations in aqueous solutions of gelatin, in both liquid and gel states. A comparison with diffusion measurements using pulsed field gradient NMR, and circular dichroism spectroscopy, shows that(More)
We have developed a system for contactless measurement of nonlinear conductivity in the radio-frequency band, and over a wide temperature range. A non-resonant circuit is used to electrically excite the sample, and the induced signal is detected by a resonant circuit whose natural frequency matches higher harmonics of the excitation. A simple modification(More)
We present the observation of glasslike dynamic correlations of mobile mercury ions in the ionic conductor Cu2HgI4, detected in both NMR and nonlinear conductivity experiments. The results show that dynamic cooperativity appears in systems seemingly unrelated to glassy and soft arrested materials. A simple kinetic two-component model is proposed, which(More)
We present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode polarization effects that usually cripple standard impedance analysers. We have successfully tested our(More)
Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between(More)
The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at (13)C nuclei in a ferromagnetic carbon(More)
  • 1