Damien Le Menuet

Learn More
The human mineralocorticoid receptor (hMR), a ligand-dependent transcription factor (NR3C2) which belongs to the nuclear receptor superfamily, mediates most of the known effects of aldosterone. Beside its involvement in the regulation of sodium balance and the control of blood pressure, aldosterone-hMR tandem also exerts important regulatory functions on(More)
The last decade has witnessed tremendous progress in the understanding of the mineralocorticoid receptor (MR), its molecular mechanism of action, and its implications for physiology and pathophysiology. After the initial cloning of MR, and identification of its gene structure and promoters, it now appears as a major actor in protein-protein interaction(More)
Mineralocorticoid receptor (MR), a hormone-activated transcription factor belonging to the nuclear receptor superfamily, exerts widespread actions in many tissues such as tight epithelia, the cardiovascular system, adipose tissues and macrophages. In the mammalian brain, MR is present in the limbic areas where it is highly expressed in neurons of the(More)
22 23 Word count: 5636 24 Running title: cardiac MR and pacemaker channel HCN1 25 2 Abstract 26 27 Aims 28 Cardiac Mineralocorticoid Receptor (MR) activation triggers adverse cardiovascular 29 events that could be efficiently prevented by mineralocorticoid antagonists. To gain 30 insights into the pathophysiological role of MR function, we established(More)
The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that(More)
Mineralocorticoid receptor (MR) plays a critical role in brain function. However, the regulatory mechanisms controlling neuronal MR expression that constitutes a key element of the hormonal response are currently unknown. Two alternative P1 and P2 promoters drive human MR gene transcription. To examine promoter activities and their regulation during(More)
Expression of germ cell nuclear factor (GCNF; Nr6a1), an orphan member of the nuclear receptor gene family of transcription factors, during gastrulation and neurulation is critical for normal embryogenesis in mice. Gcnf represses the expression of the POU-domain transcription factor Oct4 (Pou5f1) during mouse post-implantation development. Although Gcnf(More)
Mineralocorticoid receptor (MR) signaling is pivotal for numerous physiological processes and implicated in various pathological conditions concerning among others, tight epithelia, central nervous and cardiovascular systems. For decades, the pleiotropic actions of MR have been investigated using animal and cellular models as well as by clinical studies.(More)
The last decade has witnessed tremendous progress in the understanding of Mineralocorticoid Receptors (MR), their molecular mechanism of action, and their implication for physiology and pathophysiology. After the initial cloning of MR, and identification of its gene structure and promoters, it now appears as a major actor in protein-protein interaction(More)
  • 1