Learn More
Osmotic phenomena influence the intervertebral disc biomechanics. Their simulation is challenging and can be undertaken at different levels of complexity. Four distinct approaches to simulate the osmotic behaviour of the intervertebral disc (a fixed boundary pore pressure model, a fixed osmotic pressure gradient model in the whole disc or only in the(More)
The collagen network of the annulus fibrosus largely controls the functional biomechanics of the lumbar intervertebral discs (IVDs). Quantitative anatomical examinations have shown bundle orientation patterns, possibly coming from regional adaptations of the annulus mechanics. This study aimed to show that the regional differences in annulus mechanical(More)
Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was(More)
In the human lumbar spine, annulus fibrosus fibres largely contribute to intervertebral disc stability. Detailed annulus models are therefore necessary to obtain reliable predictions of lumbar spine mechanics by finite element modelling. However, different definitions of collagen orientations coexist in the literature for healthy human lumbar annuli.(More)
Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process(More)
  • 1