Damien Kinet

Learn More
Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as(More)
The potential benefit of optical fiber sensors embedded into medical textiles for the continuous monitoring of patients for MRI is presented. We report a monitoring system based on the use of two novel non-intrusive optical sensing technologies designed to measure the elongation due to abdominal and thoracic motions during breathing. The developed system(More)
We report highly birefringent fiber Bragg gratings in standard single-mode optical fiber realized with UV femtosecond pulses and line-by-line inscription. By controlling the three-dimensional positioning of the focused laser beam with respect to the fiber core, we achieve very high birefringence at the grating location in a single exposure. A maximum(More)
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patients is presented. We report on a novel non-intrusive optical sensing technology designed to measure the elongation due to abdominal and thoracic motions during breathing. The developed sensor can successfully sense textile elongation(More)
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging (MRI) is presented. In that way, we report on several pure optical sensing technologies for pulse oximetry and respiratory movements monitoring. The technique for pulse oximetry measurement is known as(More)
A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers(More)
In this Letter we report a fast thermal regeneration of Type I fiber Bragg gratings inscribed with a UV laser in up to four different optical fibers: hydrogenated standard fiber, hydrogenated highly Ge-doped fiber, hydrogenated photosensitive fiber, and nonhydrogenated fiber. The thermal treatment consists in directly introducing the optical fiber into a(More)
The potential impact of optical fiber sensors embedded into medical textiles for the continuous monitoring of the patient during Magnetic Resonance Imaging is presented. We report on two pure optical sensing technologies for respiratory movements monitoring - a macro bending sensor and a Bragg grating sensor, designed to measure the elongation due to(More)
We report a PM all-normal, all-in-fiber passively mode-locked laser operating at 1030 nm. The main pulse shaping mechanism is provided by a tilted chirped-FBG. The laser delivers nanojoule range highly chirped pulses at a repetition rate of about 40 MHz. The FWHM of the optical spectrum is up to 7.8 nm leading to sub-500 fs compressed optical pulses. The(More)
Highly localized refractive index modulations are photo-written in the core of pure silica fiber using point-by-point focused UV femtosecond pulses. These specific gratings exhibit a comb-like transmitted amplitude spectrum, with polarization-dependent narrowband cladding mode resonances. In this work, eccentric gratings are surrounded by a gold sheath,(More)