Damien Garrot

Learn More
Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed(More)
Long-term observations of photoluminescence at the single-molecule level were until recently very difficult, due to the photobleaching of organic fluorophore molecules. Although inorganic semiconductor nanocrystals can overcome this difficulty showing very low photobleaching yield, they suffer from photoblinking. A new marker has been recently introduced,(More)
We report on a new, original and efficient method for pi-stacking functionalization of single-wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single-wall carbon nanotubes and porphyrin molecules. We developed a micelle-swelling technique that leads to controlled and stable complexes presenting(More)
Hybrid perovskite thin films have demonstrated impressive performance for solar energy conversion and optoelectronic applications. However, further progress will benefit from a better knowledge of the intrinsic photophysics of materials. Here, the temperature-dependent emission properties of CH3NH3PbI3 single crystals are investigated and compared to those(More)
We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single(More)
We present recent developments in the synthesis and in the functional study of non covalently bound porphyrin/carbon nanotube compounds. The issue of the chemical stability of non covalent compounds is tackled by means of micelle assisted chemistry. The non covalent functionalization allows to preserve the electronic integrity of the nanotubes that display(More)
Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern.(More)
We report on the quantum yield of excitation energy transfer in non-covalently bound nanotube/porphyrin compounds. Evidence for energy transfer is gained from photoluminescence excitation experiments. We perform a quantitative evaluation of the transfer quantum yield in the case of (6,5) nanotubes through three independent methods : quantitative PLE(More)
A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type(More)