Damien Garrot

Learn More
Diamond nanoparticles are promising photoluminescent probes for tracking intracellular processes, due to embedded, perfectly photostable color centers. In this work, the spontaneous internalization of such nanoparticles (diameter 25 nm) in HeLa cancer cells is investigated by confocal microscopy and time-resolved techniques. Nanoparticles are observed(More)
dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. Abstract Long-term observations of photoluminescence at the single-molecule level were until recently very difficult, due to the photobleaching of organic fluorophore molecules. Although inorganic semiconductor nanocrystals can overcome this(More)
We report on a new, original and efficient method for pi-stacking functionalization of single-wall carbon nanotubes. This method is applied to the synthesis of a high-yield light-harvesting system combining single-wall carbon nanotubes and porphyrin molecules. We developed a micelle-swelling technique that leads to controlled and stable complexes presenting(More)
We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single(More)
Photoinduced matter motion in thin films containing azobenzene derivatives grafted to a polymer backbone is investigated by means of near-field probe microscopy. We evidence the existence of two different photomechanical processes which produce mass transport. One is governed by the light intensity pattern and the other by the light polarization pattern.(More)
By using a weak modulated laser intensity we have succeeded in reversibly controlling the dynamics of the spin-crossover (SC) single crystal [{Fe(NCSe)(py)2 }2 (m-bpypz)] inside the thermal hysteresis. The experiment could be repeated several times with a reproducible response of the high-spin low-spin interface and without crystal damage. In-depth(More)
Hybrid perovskite thin films have demonstrated impressive performance for solar energy conversion and optoelectronic applications. However, further progress will benefit from a better knowledge of the intrinsic photophysics of materials. Here, the temperature-dependent emission properties of CH3NH3PbI3 single crystals are investigated and compared to those(More)
A great advantage of the hybrid organic-inorganic perovskites is the chemical flexibility and the possibility of a molecular engineering of each part of the material (the inorganic part and the organic part respectively) in order to improve or add some functionalities. An adequately chosen organic luminophore has been introduced inside a lead bromide type(More)
Investigating the stability and evaluating the quality of the CH₃NH₃PbI₃ perovskite structures is quite critical both to the design and fabrication of high-performance perovskite devices and to fundamental studies of the photophysics of the excitons. In particular, it is known that, under ambient conditions, CH₃NH₃PbI₃ degrades producing some PbI₂. We show(More)
Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. Abstract Long-term observations of photoluminescence at the single-molecule level were until recently very difficult, due to the photobleaching of organic fluorophore(More)