Damien Fourure

  • Citations Per Year
Learn More
We present an approach that leverages multiple datasets annotated for different tasks (e.g., classification with different labelsets) to improve the predictive accuracy on each individual dataset. Domain adaptation techniques can correct dataset bias but they are not applicable when the tasks differ, and they need to be complemented to handle multi-task(More)
This paper presents GridNet, a new Convolutional Neural Network (CNN) architecture for semantic image segmentation (full scene labelling). Classical neural networks are implemented as one stream from the input to the output with subsampling operators applied in the stream in order to reduce the feature maps size and to increase the receptive field for the(More)
Color constancy is the ability of the human visual system to perceive constant colors for a surface despite changes in the spectrum of the illumination. In computer vision, the main approach consists in estimating the illuminant color and then to remove its impact on the color of the objects. Many image processing algorithms have been proposed to tackle(More)
In this work, we present an approach that leverages multiple datasets annotated using different classes (different labelsets) to improve the classification accuracy on each individual dataset. We focus on semantic full scene labeling of outdoor scenes. To achieve our goal, we use the KITTI dataset as it illustrates very well the focus of our paper : it has(More)
We present an approach that leverages multiple datasets possibly annotated using different classes to improve the semantic segmentation accuracy on each individual dataset. We propose a new selective loss function that can be integrated into deep networks to exploit training data coming from multiple datasets with possibly different tasks (e.g., different(More)
  • 1