Damian T. Murphy

Learn More
The digital waveguide mesh has been an active area of music acoustics research for over ten years. Although founded in 1-D digital waveguide modeling, the principles on which it is based are not new to researchers grounded in numerical simulation, FDTD methods, electromagnetic simulation, etc. This article has attempted to provide a considerable review of(More)
Synthesizing the room impulse response (RIR) of an arbitrary enclosure may be performed using a number of alternative acoustic modeling methods, each with their own particular advantages and limitations. This article is concerned with obtaining a hybrid RIR derived from both wave and geometric-acoustics based methods, optimized for use across different(More)
Digital waveguide physical modeling is often used as an efficient representation of acoustical resonators such as the human vocal tract. Building on the basic one-dimensional (1-D) Kelly-Lochbaum tract model, various speech synthesis techniques demonstrate improvements to the wave scattering mechanisms in order to better approximate wave propagation in the(More)
The digital waveguide mesh is a discrete-time simulation used to model acoustic wave propagation through a bounded medium. It can be applied to the simulation of the acoustics of rooms through the generation of impulse responses suitable for auralization purposes. However, large-scale three-dimensional mesh structures are required for high quality results.(More)
The digital waveguide mesh (DWM) and related finite difference time domain techniques offer significant promise for room acoustics simulation problems. However high resolution 3-D DWMs of large spaces remain beyond the capabilities of current desktop based computers, due to prohibitively long run-times and large memory requirements. This paper examines how(More)
The digital waveguide mesh has been shown to be capable of reproducing the acoustic impulse response of cylindrical vocal tract analogs. This study extends the same methodology to three-dimensional simulation of the acoustic response of graphical models of the vocal tract obtained from magnetic resonance imaging for a group of trained subjects. By such(More)
The digital waveguide mesh can be used to simulate the propagation of sound waves in an acoustic system. The accurate simulation of the acoustic characteristics of boundaries within such a system is an important part of the model. One significant property of an acoustic boundary is its diffusivity. Previous approaches to simulating diffuse boundaries in a(More)
Time domain articulatory vocal tract modeling in one-dimensional (1-D) is well established. Previous studies into two-dimensional (2-D) simulation of wave propagation in the vocal tract have shown it to present accurate static vowel synthesis. However, little has been done to demonstrate how such a model might accommodate the dynamic tract shape changes(More)
The digital waveguide mesh is a modeling technique suitable for simulation of wave propagation in an acoustic system. Artificial boundary conditions are constructed for the digital waveguide mesh. Absorbing boundary conditions are evaluated and a new method for adjusting the reflection coefficient at values 0/spl les/r/spl les/1 is introduced. The frequency(More)