Learn More
Testosterone (T) appears to play a role in anxiety and sensorimotor gating in rodents, but whether T acts through the androgen receptor (AR) to influence these behaviors is less clear. We compared adult genetic male mice with the testicular feminization mutation (Tfm), which lack functional ARs, to wild type male littermates (wt males) on an assay of(More)
Perinatal exposure to testosterone (T), which can act upon both the androgen receptor (AR) and, via aromatization of T into estrogens, upon estrogen receptors, organizes many adult behaviors in rodents. We compared behaviors in wild-type (WT) male rats and AR-deficient rats with the testicular feminization mutation (Tfm), which on the day of birth were(More)
Many studies demonstrate that exposure to testicular steroids such as testosterone early in life masculinizes the developing brain, leading to permanent changes in behavior. Traditionally, masculinization of the rodent brain is believed to depend on estrogen receptors (ERs) and not androgen receptors (ARs). According to the aromatization hypothesis,(More)
Psychostimulants such as methamphetamine (MA) induce significant alterations in the function of the hypothalamic-pituitary-adrenal (HPA) axis. These changes in HPA axis function are associated with altered stress-related behaviors and might contribute to addictive processes such as relapse. In this mini-review we discuss acute and chronic effects of MA(More)
Testosterone influences the hypothalamic-pituitary-adrenal axis, anxiety-related behavior, and sensorimotor gating in rodents, but little is known about the role of the androgen receptor (AR) in mediating these influences. We compared levels of the stress hormone corticosterone at baseline and following exposure to a novel object in an open field in wild(More)
Methamphetamine (MA) has neurotoxic effects on the adult human brain that can lead to deficits in behavior and cognition. However, relatively little research has examined the behavioral or neurotoxic effects of MA in adolescents. The rising rates of adolescent MA use make it imperative that we understand the long-term effects of MA exposure on the(More)
Exposure to glucocorticoids (GCs) in early development can lead to long-term changes in brain function and behavior, although little is known about the underlying neural mechanisms. Perinatal exposure to GCs alters adult anxiety and neuroendocrine responses to stress. Therefore, we investigated the effects of either late gestational or neonatal exposure to(More)
Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activation is associated with changes in addiction-related behaviors. In this study, we tested whether sex differences in the acute effects of methamphetamine (MA) exposure involve differential activation of the HPA axis. Male and female mice were injected with MA (1 mg/kg) or saline for comparison(More)
Estrogen receptors regulate multiple brain functions, including stress, sexual, and memory-associated behaviors as well as controlling neuroendocrine and autonomic function. During development, estrogen signaling is involved in programming adult sex differences in physiology and behavior. Expression of estrogen receptor α changes across development in a(More)
Developmental exposure to methamphetamine (MA) causes long-term behavioral and cognitive deficits. One pathway through which MA might induce these deficits is by elevating glucocorticoid levels. Glucocorticoid overexposure during brain development can lead to long-term disruptions in the hypothalamic-pituitary-adrenal (HPA) axis. These disruptions affect(More)