Daljinder K Kahlon

Learn More
The mammalian nuclear transcription factor NF-kappaB is responsible for the transcription of multiple cytokines, including the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6). Elevated levels of pro-inflammatory cytokines play an important role in the pathogenesis of inflammatory disorders such as rheumatoid(More)
The pathogenesis of rheumatoid arthritis is mainly driven by NF-κB-mediated production of cytokines, such as TNF-α. We report herein that the orally available imidazoline-based NF-κB inhibitor, TCH-013, was found to significantly reduce TNF-α signaling and attenuate collagen antibody induced arthritis in BALB/c mice.
The pathogenesis of rheumatoid arthritis is mainly driven by NF-κB-mediated production of cytokines, such as TNF-α. We report herein that the orally available imidazoline-based NF-κB inhibitor, TCH-013, was found to significantly reduce TNF-α signaling and attenuate collagen antibody induced arthritis in BALB/c mice.
We herein describe the synthesis and anti-inflammatory properties of a small library of imidazoline-based NF-kappaB inhibitors. The structure-activity relationship of various substituents on an imidazoline core structure was evaluated for the ability to inhibit NF-kappaB mediated IL-6 production. Optimization of the scaffolds was pursued by correlating(More)
  • 1