Dalibor Nikolic

Learn More
In this study we modeled a patient specific 3D knee after anterior cruicate ligament (ACL) reconstruction. The purpose of the ACL reconstruction is to achieve stability in the entire range of motion of the knee and the establishment of the normal gait pattern. We present a new reconstruction technique that generates patient-specific 3D knee models from(More)
Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous elements in arteries. It is characterized by dysfunction of endothelium and vasculitis, and accumulation of lipid, cholesterol, and cell elements inside blood vessel wall. In this study, a continuum-based approach for plaque formation and development in 3-D is(More)
In many mammalian species, the removal of one lung (pneumonectomy) is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used microCT scanning to create 3D finite element geometric models of the murine lung pre- and post-pneumonectomy (24 h). The(More)
In this chapter we described predictive model for plaque formation and progression in the coronary and carotid artery. A full three-dimensional model for plaque formation and progression, coupled with blood flow and LDL concentration is analysed. The Navier-Stokes equations together with the Darcy law for model blood filtration and Kedem-Katchalsky(More)
Computational fluid dynamics methods based on in vivo 3-D vessel reconstructions have recently been identified the influence of wall shear stress on endothelial cells as well as on vascular smooth muscle cells, resulting in different events such as flow mediated vasodilatation, atherosclerosis, and vascular remodeling. Development of image-based modeling(More)
In many mammalian species, the removal of one lung [pneumonectomy (PNX)] is associated with the compensatory growth of the remaining lung. To investigate the hypothesis that parenchymal deformation may trigger lung regeneration, we used respiratory-gated micro-computed tomography scanning to create three-dimensional finite-element geometric models of the(More)