Learn More
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the(More)
BACKGROUND The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised(More)
This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and(More)
alpha-1,4-linked oligogalacturonides (OGs) are pectic fragments of plant cell walls that are able to induce defence and developmental responses. To understand plant responses to OGs at the transcriptional level, changes in gene expression were examined using oligonucleotide-based microarrays that cover almost the entire Arabidopsis transcriptome. In(More)
Ligand-gated Ca(2+) channels provide a possible mechanism for linking perception of stimuli to intracellular Ca(2+) mobilization. Evidence for ligand-gated Ca(2+) release in plant cells arises from radiolabeled ligand binding, microsomal ion flux, and electrophysiological approaches. Results from these diverse approaches demonstrate that two classes of(More)
Ca(2+) signals are a core regulator of plant cell physiology and cellular responses to the environment. The channels, pumps, and carriers that underlie Ca(2+) homeostasis provide the mechanistic basis for generation of Ca(2+) signals by regulating movement of Ca(2+) ions between subcellular compartments and between the cell and its extracellular(More)
With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key(More)
The past three years have witnessed the birth and propagation of a provocative idea in the plant sciences. Its proponents have suggested that higher plants have nerves, synapses, the equivalent of a brain localized somewhere in the roots, and an intelligence. The idea has attracted a number of adherents, to the extent that meetings have now been held in(More)
Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential(€,ev) (cytosol referenced to vacuole), with 5, 10, or 20 mM Ca2+ as the(More)
To elucidate the kinetic properties of the Arabidopsis H+/sucrose cotransporter, SUC1, with respect to transmembrane voltage and ligand concentrations, the transport system was heterologously expressed in Xenopus laevis oocytes. Steady-state plasma membrane currents associated with transport of sucrose were measured with two-electrode voltage clamp over the(More)