Learn More
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In(More)
Ca(2+) signals are a core regulator of plant cell physiology and cellular responses to the environment. The channels, pumps, and carriers that underlie Ca(2+) homeostasis provide the mechanistic basis for generation of Ca(2+) signals by regulating movement of Ca(2+) ions between subcellular compartments and between the cell and its extracellular(More)
Cells must respond to an array of environmental and developmental cues. The signaling networks that have evolved to generate appropriate cellular responses are varied and are normally composed of elements that include a sequence of receptors, nonprotein messengers, enzymes and transcription factors. Receptors are normally highly specific for the(More)
Calcium mobilization from intracellular pools couples many stimuli to responses in plant cells. Cyclic adenosine 5'-diphosphoribose (cADPR), which interacts with a ryanodine receptor in certain animal cells, was shown to elicit calcium release at the vacuolar membrane of beet storage root. The vacuolar calcium release pathway showed similarities to(More)
Cytosolic free calcium ([Ca2+]cyt) is a ubiquitous signalling component in plant cells. Numerous stimuli trigger sustained or transient elevations of [Ca2+]cyt that evoke downstream stimulus-specific responses. Generation of [Ca2+]cyt signals is effected through stimulus-induced opening of Ca2+-permeable ion channels that catalyse a flux of Ca2+ into the(More)
Abscisic acid (ABA) is a plant hormone involved in the response of plants to reduced water availability. Reduction of guard cell turgor by ABA diminishes the aperture of the stomatal pore and thereby contributes to the ability of the plant to conserve water during periods of drought. Previous work has demonstrated that cytosolic Ca2+ is involved in the(More)
This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and(More)
Cyclic nucleotide-gated channels (CNGCs) are a recently identified family of plant ion channels. They show a high degree of similarity to Shaker-type voltage-gated channels and contain a C-terminal cyclic nucleotide-binding domain with an overlapping calmodulin-binding domain. Heterologously expressed plant CNGCs show activation by cyclic nucleotides and(More)
The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF(More)