Learn More
PURPOSE This phase I, first-in-human study evaluated the safety, maximum-tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and preliminary efficacy of SAR245409, an inhibitor of pan-Class I phosphoinositide 3-kinase (PI3K) and mTOR, administered orally once or twice daily in patients with advanced solid tumors. EXPERIMENTAL DESIGN Eighty-three(More)
BACKGROUND AND OBJECTIVES Cabozantinib is a tyrosine kinase inhibitor approved in the USA and EU for the treatment of patients with progressive, metastatic medullary thyroid cancer (MTC). The indicated cabozantinib dose is 140 mg/day, with dose modifications allowed for patients who develop adverse events (AEs). The analysis objective was to develop a(More)
PURPOSE Foretinib is an oral multikinase inhibitor targeting Met, RON, Axl, and vascular endothelial growth factor receptor. We conducted a phase I, first-time-in-human, clinical trial using escalating doses of oral foretinib. The primary objectives are to identify a maximum tolerated dose and determine the safety profile of foretinib. Secondary objectives(More)
Foretinib is an oral multi-kinase inhibitor targeting MET, vascular endothelial growth factor receptor (VEGFR)-2, RON, KIT, and AXL kinases. In this Phase 1, open-label, non-randomized study, foretinib was administered once daily at doses of 60 mg, 80 mg, 100 mg, or 120 mg for 28 days. The primary objectives were to determine the maximum tolerated dose(More)
Cabozantinib is a small-molecule tyrosine kinase inhibitor that has been approved for the treatment of patients with progressive, metastatic medullary thyroid cancer. In vitro data indicate that (1) cytochrome P450 (CYP) 3A4 is the primary CYP isoenzyme involved in the metabolism of cabozantinib, and (2) CYP2C8 is the CYP isoenzyme most potently inhibited(More)
To gain a better understanding of the mechanism of action of the metal cation-containing chemotherapeutic drug motexafin gadolinium (MGd), gene expression profiling analyses were conducted on plateau phase human lung cancer (A549) cell cultures treated with MGd. Drug treatment elicited a highly specific response that manifested in elevated levels of(More)
364 Background: Cabozantinib (cabo) is an oral, potent inhibitor of MET and VEGFR2 that is currently undergoing clinical efficacy evaluation in several oncology indications. Renal cell carcinoma (RCC) was chosen as an indication in this drug-drug interaction (DDI) study based on involvement of the MET and VEGFR signaling pathways in this disease. The(More)
The biotransformation of motexafin gadolinium (MGd, Xcytrin) was investigated in subcellular rat and human liver fractions. Microsomal MGd metabolism was dependent on NADPH in both species. Cytosolic metabolism in rat and human livers was dependent on NADPH or NADH. Under anaerobic conditions, MGd metabolism increased in liver microsomes and purified enzyme(More)
Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest(More)
Sapphyrins are pentapyrrolic metal-free expanded porphyrins with potential medical use as anticancer agents. The novel sapphyrin derivative, PCI-2050, functionalized with 2-[2-(2-methoxyethoxy)ethoxy]ethoxy groups to enhance solubility and a modified bipyrrole moiety was found to be more potent in inducing apoptosis than the previously described sapphyrin(More)