Learn More
Various approaches for evaluating the bioequivalence (BE) of highly variable drugs (CV > or = 30%) have been debated for many years. More recently, the FDA conducted research to evaluate one such approach: scaled average BE. A main objective of this study was to determine the impact of scaled average BE on study power, and compare it to the method commonly(More)
The purpose of this article is to document the discussions at the 2010 European Workshop on Equivalence Determinations for Orally Inhaled Drugs for Local Action, cohosted by the International Society for Aerosols in Medicine (ISAM) and the International Pharmaceutical Consortium on Regulation and Science (IPAC-RS). The article summarizes current regulatory(More)
The objective of this article is to discuss the similarities and differences among bioequivalence approaches used by international regulatory authorities when reviewing applications for marketing new generic drug products which are systemically active and intended for oral administration. We focused on the 13 jurisdictions and organizations participating in(More)
A generic product must meet the standards established by the Food and Drug Administration (FDA) to be approved for marketing in the USA. FDA approves a generic product for marketing if it is proved to be therapeutically equivalent to the reference product. Bioequivalence (BE) between a proposed generic product and its corresponding reference product is one(More)
Highly variable (HV) drugs are defined as those for which within-subject variability (%CV) in bioequivalence (BE) measures is 30% or greater. Because of this high variability, studies designed to show whether generic HV drugs are bioequivalent to their corresponding HV reference drugs may need to enroll large numbers of subjects even when the products have(More)
Historically, regulatory assessment of bioequivalence (BE) has relied upon the comparison of rate and extent of drug absorption between products (1). For drugs intended to be absorbed and systemically delivered to the site(s) of activity, this is generally achieved by measuring drug concentrations in an accessible biological fluid such as blood plasma.(More)
The objective of this article is to discuss the similarities and differences in accepted bioequivalence (BE) approaches for generic topical dermatological drug products between international regulatory authorities and organizations. These drug products are locally applied and not intended for systemic absorption. Therefore, the BE approaches which serve as(More)
Various health communities have expressed concerns regarding whether average bioequivalence (BE) limits (80.00–125.00%) for the 90% confidence interval of the test-to-reference geometric mean ratio are sufficient to ensure therapeutic equivalence between a generic narrow therapeutic index (NTI) drug and its reference listed drug (RLD). Simulations were(More)
Demonstrating bioequivalence (BE) for nasal spray/aerosol products for local action has been very challenging because the relationship between the drug in systemic circulation and the drug reaching the nasal site of action has not been well established. Thus, the current BE standard for these drug/device combination products is based on a weight-of-evidence(More)