Learn More
BACKGROUND Eukaryotic cells localize selected mRNAs to a region of the cell as a means to sequester proteins. Signals within the 3' untranslated region (3' UTR) facilitate mRNA localization by both actin and microtubule cytoskeletal systems. Recently, an mRNA in the yeast Saccharomyces cerevisiae, ASH1, was shown to coalesce into a discrete particle that is(More)
sis, has simple microtubule arrays with discrete functions during the cell cycle yeast MTOC, the spindle pole body (SPB), are conserved with other eukaryotes (Murphy et al., 1998; Tassin et al., Summary Many temperature-sensitive tub4 mutants fail to form microtubules (Marschall et al., 1996), suggesting that ␥-Tubulin is essential for microtubule(More)
There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools(More)
BACKGROUND Two genetic 'pathways' contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement(More)
Novel green fluorescent protein (GFP) labeling techniques targeting specific mRNA transcripts reveal discrete phases of mRNA localization in yeast: packaging, transport, and docking. In budding yeast, ASH1 mRNA is translocated via actin and myosin to the tip of growing cells. A GFP-decorated reporter transcript containing the ASH1 3Ј untranslated region(More)
  • 1