Dale Boucher

Learn More
— We present an " Artificial Neural Tissue " (ANT) architecture as a control system for autonomous multirobot tasks. This architecture combines a typical neural-network structure with a coarse-coding strategy that permits specialized areas to develop in the tissue which in turn allows such emergent capabilities as task decomposition. Only a single global(More)
Automation of site preparation and resource utilization on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. Such multirobot autonomous systems would require limited human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present an Artificial Neural Tissue(More)
NASA's planned permanent return to the Moon by the year 2018 will demand advances in many technologies. Just as those pioneers who built a homestead in North America from abroad, it will be necessary to use the resources and materials available on the Moon, commonly referred to as in-situ resource utilization. This benefit would come in a number of ways.(More)
Automation of mining and resource utilization processes on the Moon with teams of autonomous robots holds considerable promise for establishing a lunar base. We present an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot tasks. An Artificial Neural Tissue (ANT) approach requires much less human supervision and(More)
  • 1