Learn More
We developed a new method to estimate the spatial extent of summation, the cortical spread, of the local field potential (LFP) throughout all layers of macaque primary visual cortex V1 by taking advantage of the V1 retinotopic map. We mapped multi-unit activity and LFP visual responses with sparse-noise at several cortical sites simultaneously. The cortical(More)
Previous research has established that orientation selectivity depends to a great extent on suppressive mechanisms in the visual cortex. In this study, we investigated the spatial organization and the time-course of these mechanisms. Stimuli were presented in circular windows of "optimal" and "large" radii. The two stimulus sizes were chosen based on an(More)
Currently there is considerable debate as to the nature of the pathways that are responsible for the perception and motor performance. We have studied the relationship between perceived speed, which is the experiential representation of a moving stimulus, and the speed of smooth pursuit eye movements, the motor action. We determined psychophysical(More)
Visual cortical neurones display a variety of visual properties. Among those that emerge in the primary visual cortex V1 are sharpening of selectivity for spatial frequency and for orientation. The selectivity for these stimulus attributes can be measured around the peak of the tuning function, usually as bandwidth. Other selectivity measures take into(More)
Neural activity in the gamma frequency range ("gamma") is elevated during active cognitive states. Gamma has been proposed to play an important role in cortical function, although this is debated. Understanding what function gamma might fulfill requires a better understanding of its properties and the mechanisms that generate it. Gamma is characterized by(More)
The concept of receptive field is a linear, feed-forward view of visual signal processing. Frequently used models of V1 neurons, like the dynamic Linear filter--static nonlinearity--Poisson [corrected] spike encoder model, predict that receptive fields measured with different stimulus ensembles should be similar. Here, we tested this concept by comparing(More)
Consistent with human perceptual data, we found many more black-dominant than white-dominant responses in layer 2/3 neurons of the macaque primary visual cortex (V1). Seeking the mechanism of this black dominance of layer 2/3 neurons, we measured the laminar pattern of population responses (multiunit activity and local field potential) and found that a(More)
Darkness and brightness are very different perceptually. To understand the neural basis for the visual difference, we studied the dynamical states of populations of neurons in macaque primary visual cortex when a spatially uniform area (8° × 8°) of the visual field alternated between black and white. Darkness evoked sustained nerve-impulse spiking in(More)
Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is(More)
Studying the laminar pattern of neural activity is crucial for understanding the processing of neural signals in the cerebral cortex. We measured neural population activity [multiunit spike activity (MUA) and local field potential, LFP] in Macaque primary visual cortex (V1) in response to drifting grating stimuli. Sustained visually driven MUA was at an(More)