Daisuke Arinobu

Learn More
Cone photoreceptors show briefer photoresponses than rod photoreceptors. Our previous study showed that visual pigment phosphorylation, a quenching mechanism of light-activated visual pigment, is much more rapid in cones than in rods. Here, we measured the early time course of this rapid phosphorylation with good time resolution and directly compared it(More)
In the vertebrate retina, rods mediate twilight vision and cones mediate daylight vision. Their photoresponse characteristics are different. The light-sensitivity of a cone is 10(2)-10(3) times lower than that of a rod. In addition, the photoresponse time course is much faster in cones. The mechanism characterizing cone photoresponses has not been known(More)
In the carp retina, visual pigment kinase, GRK1 (G-protein coupled receptor kinase 1) in rods and GRK7 in cones, is inhibited by a photoreceptor neuronal Ca(2+)-sensor protein, S-modulin (or recoverin) in rods and visinin (formerly named s26) in cones. Here, we compared Ca(2+)-dependent inhibition of GRK1 by S-modulin and that of GRK7 by visinin. First, the(More)
Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong(More)
  • 1