Daihiko Hakuno

Learn More
BACKGROUND We recently reported that cardiomyocytes could be differentiated from bone marrow mesenchymal stem cells in vitro by 5-azacytidine treatment. In native cardiomyocytes, adrenergic and muscarinic receptors play crucial roles in mediating heart rate, conduction velocity, contractility, and cardiac hypertrophy. We investigated whether these receptors(More)
A metabolizing enzyme arginase can decrease nitric oxide (NO) production by competing with NO synthase for arginine as a substrate, but its pathophysiological role in heart failure remains unknown. We aimed to investigate the effect of pharmacological inhibition of arginase on left ventricular function in doxorubicin-induced cardiomyopathy in mice.(More)
BACKGROUND Rupture of the chordae tendineae cordis (CTC) is a well-known cause of mitral regurgitation. Despite its importance, the mechanisms by which the CTC is protected and the cause of its rupture remain unknown. CTC is an avascular tissue. We investigated the molecular mechanisms underlying the avascularity of CTC and the correlation between(More)
Bone marrow mesenchymal stem cells (CMG cells) are multipotent and can be induced by 5-azacytidine to differentiate into cardiomyocytes. We characterized the electrophysiological properties of these cardiomyocytes and investigated their potential for use as transplantable bio-pacemakers. After differentiation, action potentials in spontaneously beating(More)
BACKGROUND Insulin signaling comprises 2 major cascades: the insulin receptor substrate/phosphatidylinositol 3'-kinase/protein kinase B and Ras/Raf/mitogen-activated protein kinase/kinase/ERK pathways. While many studies on the tissue-specific effects of the insulin receptor substrate/phosphatidylinositol 3' -kinase/protein kinase B pathway have been(More)
BACKGROUND Recently, it has been reported that specific microRNA (miRNA) levels are elevated in serum and can be used as biomarkers in patients with cardiovascular diseases. However, miRNAs expression profiles and their sources in pericardial fluid (PF) are unclear. METHODS AND RESULTS The purpose of this study was to identify the levels of miRNAs in PF(More)
BACKGROUND The heart has close interactions with other organs' functions and concomitant systemic factors such as oxidative stress, nitric oxide (NO), inflammation, and nutrition in systolic heart failure (HF). Recently, plasma amino acid (AA) profiling as a systemic metabolic indicator has attracted considerable attention in predicting the future risk of(More)
  • 1