Learn More
We present an analysis of atmospheric neutrino data from a 33.0 kiloton-year (535-day) exposure of the Super{Kamiokande detector. The data exhibit a zenith angle dependent decit of muon neutrinos which is inconsistent with expectations based on calculations of the atmospheric neutrino ux. Experimental biases and uncertainties in the prediction of neutrino(More)
A search for the relic neutrinos from all past core-collapse supernovae was conducted using 1496 days of data from the Super-Kamiokande detector. This analysis looked for electron-type antineutrinos that had produced a positron with an energy greater than 18 MeV. In the absence of a signal, 90% C.L. upper limits on the total flux were set for several(More)
Solar neutrino measurements from 1258 days of data from the Super-Kamiokande detector are presented. The measurements are based on recoil electrons in the energy range 5.0-20.0 MeV. The measured solar neutrino flux is 2.32+/-0.03(stat)+0.08-0.07(syst)x10(6) cm(-2) x s(-1), which is 45.1+/-0.5(stat)+1.6-1.4(syst)% of that predicted by the BP2000 SSM. The day(More)
The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to(More)
We report the result of a search for neutrino oscillations using precise measurements of the recoil electron energy spectrum and zenith angle variations of the solar neutrino flux from 1258 days of neutrino-electron scattering data in Super-Kamiokande. The absence of significant zenith angle variation and spectrum distortion places strong constraints on(More)
A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found(More)
2 The decay of 16 N is used to cross check the absolute energy scale calibration for solar neutrinos established by the electron linear accelerator (LINAC). A deuterium-tritium neutron generator was employed to create 16 N via the (n,p) reaction on 16 O in the water of the detector. This technique is isotropic and has different systematic uncertainties than(More)
2 Abstract In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements , a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy(More)