Learn More
Sphingolipid metabolites have emerged as critical players in a number of fundamental biological processes. Among them, sphingosine-1-phosphate (S1P) promotes cell survival and proliferation, in contrast to ceramide and sphingosine, which induce cell growth arrest and apoptosis. These sphingolipids with opposing functions are interconvertible inside cells,(More)
Lysophosphatidic acid (LPA) is a lipid mediator with diverse effects on various cells. Here, we investigated the effects of LPA on human colon carcinoma DLD1 cells. Northern blot analysis revealed that DLD1 highly expressed LPA1/Edg-2 but showed only low expression of LPA2/Edg-4 and no expression of LPA3/Edg-7 at the mRNA level. Western blot analysis(More)
Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse effects on various cells, that interacts with three G protein-coupled transmembrane receptors, LPA1, LPA2, and LPA3. The expression pattern and functions of these LPA receptors in various tumors have not been fully examined, except in ovarian cancer. To evaluate the LPA receptor(More)
Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been(More)
Leptin is known to act as a growth factor through the Janus-activated kinase (JAK)/signal transducer and activator of transcription signaling pathway as well as the mitogen-activated protein kinase pathway. In this study, we showed a novel signal transduction pathway using two human gastric cancer cell lines, MKN28 and MKN74. Both gastric cancer cells(More)
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse effects on various cells. It interacts with at least three G-protein-coupled transmembrane receptors, namely LPA1, LPA2 and LPA3, whose expression in various tumours has not been fully characterized. In the present study we characterized the expression profile of LPA receptors in human(More)
Receptor tyrosine kinases (RTKs) are transactivated by the stimulation of G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P), a ligand of GPCR, is known as a tumor-promoting lipid, but its signaling pathways are not fully understood. We here demonstrated that S1P induces rapid and transient tyrosine phosphorylation of epidermal growth factor(More)
BACKGROUND AND OBJECTIVES Lysophosphatidic acid (LPA), a natural phospholipid, can modulate diverse cellular responses through LPA receptor, LPA1-4. Although LPA1 is known to be widely expressed in human tissues, the distribution of other LPA receptors is not characterized in malignant tissues. Recently, it was reported that malignant transformation(More)
In MKN1 gastric cancer cells, lysophosphatidic acid (LPA) upregulates expression of sphingosine kinase 1 (SphK1) and its downregulation or inhibition suppresses LPA mediated proliferation. Although LPA activates numerous signaling pathways downstream of its receptors, including extracellular-signal-regulated kinase 1/2, p38, JNK, and Akt, and the(More)
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are lysophospholipid mediators of diverse cellular processes important for cancer progression. S1P is produced by two sphingosine kinases, SphK1 and SphK2. Expression of SphK1 is elevated in many cancers. Here, we report that LPA markedly enhanced SphK1 mRNA and protein in gastric cancer MKN1(More)