Learn More
Sphingolipid metabolites have emerged as critical players in a number of fundamental biological processes. Among them, sphingosine-1-phosphate (S1P) promotes cell survival and proliferation, in contrast to ceramide and sphingosine, which induce cell growth arrest and apoptosis. These sphingolipids with opposing functions are interconvertible inside cells,(More)
INTRODUCTION Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse effects on various cells. It interacts with at least three G-protein-coupled transmembrane receptors, namely LPA1, LPA2 and LPA3, whose expression in various tumours has not been fully characterized. In the present study we characterized the expression profile of LPA receptors(More)
Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been(More)
Lysophosphatidic acid (LPA) is a lipid mediator with diverse effects on various cells. Here, we investigated the effects of LPA on human colon carcinoma DLD1 cells. Northern blot analysis revealed that DLD1 highly expressed LPA1/Edg-2 but showed only low expression of LPA2/Edg-4 and no expression of LPA3/Edg-7 at the mRNA level. Western blot analysis(More)
Lysophosphatidic acid (LPA), which interacts with at least three G protein-coupled receptors (GPCRs), LPA1/Edg-2, LPA2/Edg-4, and LPA3/Edg-7, is a lipid mediator with diverse effects on various cells. Here, we investigated the expression profiles of LPA receptors and patterns of LPA-induced migration in gastric cancer cells. Northern blot analysis revealed(More)
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are lysophospholipid mediators of diverse cellular processes important for cancer progression. S1P is produced by two sphingosine kinases, SphK1 and SphK2. Expression of SphK1 is elevated in many cancers. Here, we report that LPA markedly enhanced SphK1 mRNA and protein in gastric cancer MKN1(More)
Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse effects on various cells, that interacts with three G protein-coupled transmembrane receptors, LPA1, LPA2, and LPA3. The expression pattern and functions of these LPA receptors in various tumors have not been fully examined, except in ovarian cancer. To evaluate the LPA receptor(More)
Sphingosine-1-phosphate is a potent lipid mediator formed by phosphorylation of sphingosine, a metabolite of sphingolipids, catalyzed by two sphingosine kinase (SphK) isoenzymes, SphK1 and SphK2. Expression of SphK2, which is enriched in the nucleus of MCF7 human breast cancer cells, increased expression of the cyclin-dependent kinase inhibitor p21 but had(More)
BACKGROUND AND OBJECTIVES Lysophosphatidic acid (LPA), a natural phospholipid, can modulate diverse cellular responses through LPA receptor, LPA1-4. Although LPA1 is known to be widely expressed in human tissues, the distribution of other LPA receptors is not characterized in malignant tissues. Recently, it was reported that malignant transformation(More)
Lysophosphatidic acid (LPA) is involved in a broad spectrum of biological activities, including wound healing and cancer metastasis. Autotaxin (ATX), originally isolated from a melanoma supernatant as a tumor cell motility-stimulating factor, has been shown to be molecularly identical to lysophospholipase D (lysoPLD), which is the main enzyme in the(More)