Learn More
We report a numerical study on heat conduction in one-dimensional homogeneous lattices in both the linear and the nonlinear response regime, with a comparison among three prototypical nonlinear lattice models. In the nonlinear response regime, negative differential thermal resistance (NDTR) can occur in both the Frenkel-Kontorova model and the phi4 model.(More)
The noise effects on dynamical-mode-locking phenomena in the ac-driven dissipative Frenkel-Kontorova model are studied by molecular-dynamics simulations. It was found that the noise strongly influences the properties of the Shapiro steps and the way they respond to the changing of system parameters. The increase of temperature produces the melting of the(More)
We compare two effective phonon theories, which have both been applied recently to study heat conduction in anharmonic lattices. In particular, we study the temperature dependence of the thermal conductivity of the Fermi-Pasta-Ulam beta model via the Debye formula, showing the equivalence of both approaches. The temperature for the minimum of the thermal(More)
Heat conduction through the Frenkel-Kontorova chain under the influence of an ac driving force applied locally at one boundary is studied by nonequilibrium molecular dynamics simulations. We observe the occurrence of thermal resonance, namely, there exists a value of the driving frequency at which the heat flux takes its maximum value. The resonance(More)
Heat conduction in three-dimensional anharmonic lattices was numerically studied by the Green-Kubo theory. For a given lattice width W, a dimensional crossover is generally observed to occur at a W-dependent threshold of the lattice length. Lattices shorter than W will display a 3D behavior while lattices longer than W will display a 1D behavior. In the 3D(More)
Fifteen new lignans, gymnothelignans A-O (1-15), bearing tetrahydrofuran with variable conformations belonging to three potentially related skeletons were isolated from Gymnotheca chinensis Decne. The structures were elucidated by means of detailed spectroscopic analysis. Absolute configurations were assigned using X-ray single-crystal diffraction and(More)
Phytochemical investigation of the ethyl acetate and methanol extracts of the bark of Madagascan endemic and medicinal plant Cinnamosma fragrans led to the isolation of two drimane sesquiterpene derivatives: cinnafragroside A (1) and cinnafragrin E (2), two aromatic glycosides: 3,4,5-trimethoxyphenol 1-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (3) and(More)
We study effects of interaction symmetry in one-dimensional, momentum-conserving disordered lattices. It is found that asymmetric and symmetric interparticle interactions may result in significant difference: localized modes can be delocalized by very weak asymmetric interactions but survive much stronger symmetric interactions. Moreover, in the(More)
We study the thermal boundary conduction in one-dimensional harmonic and ϕ^{4} lattices, both of which consist of two segments coupled by a harmonic interaction. For the ballistic interfacial heat transport through the harmonic lattice, we use both theoretical calculation and molecular dynamics simulation to study the heat flux and temperature jump at the(More)
A logarithmic oscillator has been proposed to serve as a thermostat recently since it has a peculiar property of infinite heat capacity according to the virial theorem. In order to examine its feasibility in numerical simulations, a modified logarithmic potential has been applied in previous studies to eliminate the singularity at the origin. The role(More)