Learn More
Induction of apoptosis in keratinocytes by UV light is a critical event in photocarcinogenesis. Although p53 is of importance in this process, evidence exists that other pathways play a role as well. Therefore, we studied whether the apoptosis-related surface molecule CD95 (Fas/APO-1) is involved. The human keratinocyte cell line HaCaT expresses CD95 and(More)
Ultraviolet-B radiation (UVB) causes a variety of biological effects which include the induction of apoptosis. UVB-induced apoptosis provides a well controlled scavenging mechanism protecting cells from malignant transformation. To induce programmed cell death, UVB uses a variety of cellular signaling pathways. In this context induction of nuclear DNA(More)
The transcription factor nuclear factor kappa-B (NF-kappaB) is generally regarded as an antiapoptotic factor. Accordingly, NF-kappaB activation inhibits death ligand-induced apoptosis. In contrast, ultraviolet light B (UVB)-induced apoptosis is not inhibited but even enhanced upon NF-kappaB activation by interleukin-1 (IL-1). This study was performed to(More)
Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel(More)
Nuclear DNA damage and death receptor (CD95) activation by ultraviolet-B radiation (UVB) play a major role in UVB-induced apoptosis. Removal of DNA damage combined with inhibition of death receptor activation resulted in pronounced but not complete suppression of apoptosis, indicating that a third independent pathway is involved. Since reactive oxygen(More)
Effective treatment of malignant melanoma with the tumor-selective death ligand tumor necrosis-related apoptosis-inducing ligand (TRAIL) is curtailed by the fact that many melanoma cell lines are a priori resistant against TRAIL-induced apoptosis. By investigating 18 melanoma cell lines, we show that TRAIL susceptibility is completely independent of the(More)
BACKGROUND Biological effects of nuclear factor-kappaB (NF kappaB) can differ tremendously depending on the cellular context. For example, NF kappaB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NF(More)
Successful treatment of melanoma is still challenging, because metastasis remain chemoresistant and radioresistant. Accordingly, combinational treatments involving death ligands are mandatory. In a recent study from our lab, the majority out of 18 melanoma cell lines remained resistant against treatment with the death ligand TRAIL (tumor necrosis factor(More)
Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation.(More)
In melanoma, the PI3K-AKT-mTOR (AKT) and RAF-MEK-ERK (MAPK) signaling pathways are constitutively activated and appear to play a role in chemoresistance. Herein, we investigated the effects of pharmacological AKT and MAPK pathway inhibitors on chemosensitivity of melanoma cells to cisplatin and temozolomide. Chemosensitivity was tested by examining effects(More)