Dagmar Kulms

Learn More
Induction of apoptosis of keratinocytes by ultraviolet (UV) radiation is a protective phenomenon relevant in limiting the survival of cells with irreparable DNA damage. Changes in UV-induced apoptosis may therefore have significant impact on photocarcinogenesis. We have found that the immunomodulatory cytokine IL-12 suppresses UV-mediated apoptosis of(More)
Induction of apoptosis in keratinocytes by UV light is a critical event in photocarcinogenesis. Although p53 is of importance in this process, evidence exists that other pathways play a role as well. Therefore, we studied whether the apoptosis-related surface molecule CD95 (Fas/APO-1) is involved. The human keratinocyte cell line HaCaT expresses CD95 and(More)
Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be(More)
Background: Biological effects of nuclear factor-κB (NFκB) can differ tremendously depending on the cellular context. For example, NFκB induced by interleukin-1 (IL-1) is converted from an inhibitor of death receptor induced apoptosis into a promoter of ultraviolet-B radiation (UVB)-induced apoptosis. This conversion requires prolonged NFκB activation and(More)
Despite remarkable efforts, metastatic melanoma (MM) still presents with significant mortality. Recently, mono-chemotherapies are increasingly replenished by more cancer-specific combination therapies involving death ligands and drugs interfering with cell signaling. Still, MM remains a fatal disease because tumors rapidly develop resistance to novel(More)
Brain metastases are the most common cause of death in patients with metastatic melanoma, and the RAF-MEK-ERK and PI3K-AKT signaling pathways are key players in melanoma progression and drug resistance. The BRAF inhibitor vemurafenib significantly improved overall survival. However, brain metastases still limit the effectiveness of this therapy. In a series(More)
BACKGROUND Current treatment strategies for head and neck cancer are associated with significant morbidity and up to 50% of patients relapse, highlighting the need for more specific and effective therapeutics. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Smac mimetics (SMs) are promising anticancer agents, but their effect on head(More)
Human papillomavirus (HPV) is causative for a new and increasing form of head and neck squamous cell carcinomas (HNSCCs). Although localised HPV-positive cancers have a favourable response to radio-chemotherapy (RT/CT), the impact of HPV in advanced or metastatic HNSCC remains to be defined and targeted therapeutics need to be tested for cancers resistant(More)
In response to genotoxic stress, including UVB radiation, transcription factors NF-κB and p53 inevitably influence the cellular fate. Loss of p53 function has been attributed to malignant transformation and interferes with therapeutic interventions, whereas "gain of function" mutants even enhance tumor promotion. Constitutive NF-κB activation is linked to(More)
Activation of nuclear factor κB (NF-κB) by interleukin-1β (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-κB dependent resynthesis of its own inhibitor IκBα. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with(More)