Learn More
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the ultrastructural changes in bacteria induced by antimicrobial peptides (AMPs). Both the beta-stranded gramicidin S and the alpha-helical peptidyl-glycylleucine-carboxyamide (PGLa) are cationic amphiphilic AMPs known to interact with bacterial membranes. One(More)
The use of nanostructured silica (SiO2) particles is no longer restricted to biomedical and (bio-) technological fields but rather finding applications in products of the food industry. Thus, our studies on the toxicological relevance of SiO2 nanoparticles focused on cytotoxic effects, the modulation of the cellular redox status and the impact on DNA(More)
We report a facile strategy to synthesize water-soluble, fluorescent gold nanoclusters (AuNCs) in one step by using a mild reductant, tetrakis(hydroxymethyl)phosphonium chloride (THPC). A zwitterionic functional ligand, D-penicillamine (DPA), as a capping agent endowed the AuNCs with excellent stability in aqueous solvent over the physiologically relevant(More)
Three differently sized, highly dispersed platinum nanoparticle (Pt-NP) preparations were generated by supercritical fluid reactive deposition (SFRD) and deposited on a β-cyclodextrin matrix. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations of <20, <100 and >100 nm as(More)
Supercritical fluid reactive deposition was used for the deposition of highly dispersed platinum nanoparticles with controllable metal content and particle size distribution on beta-cyclodextrin. The average particle size and size distribution were steered by the precursor reduction conditions, resulting in particle preparations <20, <100, and >100 nm as(More)
One of the biggest limitations of conventional carbon nanotube device fabrication techniques is the inability to scale up the processes to fabricate a large number of devices on a single chip. In this report, we demonstrate the directed and precise assembly of single-nanotube devices with an integration density of several million devices per square(More)
Imaging of weak amplitude and phase objects, such as unstained vitrified biological samples, by conventional transmission electron microscopy (TEM) suffers from poor object contrast since the amplitude and phase of the scattered electron wave change only very little. In phase contrast light microscopy the imaging of weak phase objects is greatly enhanced by(More)
The mean inner potential of GaAs(14.18V), InAs(14.50V), GaP(14.35V) and InP(14.50V) has been measured by transmission electron holography using the phase shift of the (000)-beam of the first hologram sideband. To provide a defined specimen geometry we used 90 degrees wedges obtained by the cleavage technique. The exact excitation condition as well as the(More)
The mean inner potentials of various III-V semiconductors, Si and Ge have been calculated by density functional theory methods. For that purpose, the Coulomb potential of slabs consisting of a crystal and vacuum region has been computed and averaged inside the crystal region. The computed values are in agreement with experimental values obtained by electron(More)
A microwave-assisted strategy for synthesizing dihydrolipoic acid (DHLA) capped fluorescent gold nanoclusters (AuNCs) has been developed. Irradiation with microwaves during synthesis enhanced the fluorescence quantum yield (QY) of AuNCs by about five-fold and shortened the reaction time from hours to several minutes. The as-synthesized DHLA-AuNCs possessed(More)