Dag Stenberg

Learn More
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. We have previously shown that nitric oxide (NO) generation increases in the basal forebrain (BF) during sleep deprivation (SD). Moreover, both NO synthase (NOS) inhibition and a(More)
Sleep homeostasis is the process by which recovery sleep is generated by prolonged wakefulness. The molecular mechanisms underlying this important phenomenon are poorly understood. Here, we assessed the role of the intercellular gaseous signaling agent NO in sleep homeostasis. We measured the concentration of nitrite and nitrate, indicative of NO(More)
A prolonged period of waking accumulates sleep pressure, increasing both the duration and the intensity of the subsequent sleep period. Delta power, which is calculated from the slow range electroencephalographic (EEG) oscillations (0.1-4 Hz), is regarded as the marker of sleep intensity. Recent findings indicate that not only the duration but also the(More)
Noradrenergic locus ceruleus neurons are most active during waking and least active during rapid eye movement (REM) sleep. We expected REM sleep deprivation (REMSD) to increase norepinephrine utilization and activate the tyrosine hydroxylase (TH) gene critical for norepinephrine production. Male Wistar rats were deprived of REM sleep with the platform(More)
A topic of high current interest and controversy is the basis of the homeostatic sleep response, the increase in non-rapid-eye-movement (NREM) sleep and NREM-delta activity following sleep deprivation (SD). Adenosine, which accumulates in the cholinergic basal forebrain (BF) during SD, has been proposed as one of the important homeostatic sleep factors. It(More)
Sleep is regulated by homeostatic and circadian factors, and the regulation of sleep of mammals shares many molecular properties with the rest state of submammalian species. Several brain structures take part in waking: the basal forebrain, posterior and lateral hypothalamus, and nuclei in the tegmentum and pons. Active sleep mechanisms are located to the(More)
Sleep deprivation (SD) increases extracellular adenosine levels in the basal forebrain, and pharmacological manipulations that increase extracellular adenosine in the same area promote sleep. As pharmacological evidence indicates that the effect is mediated through adenosine A1 receptors (A1R), we expected A1R knockout (KO) mice to have reduced rebound(More)
Saliva and serum samples were collected from eight healthy volunteers every two hours during a 26-hour period. Melatonin concentrations were measured by radioimmunoassay after chloroform extraction using radioiodinated melatonin as a tracer. Five of the subjects had high serum melatonin levels at night (peak levels higher than 75 pg/ml); in three subjects(More)
Serial EEGs were recorded in 15 patients with acute cerebral infarctions in order to study clinical and prognostic correlations. The EEG was recorded within 48 h from the first symptoms and thereafter weekly for 4 weeks. The EEGs were analyzed both visually and with a computerized spectral analysis. Eight of the patients recovered fully and seven had(More)
Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4-dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three-hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non-REM(More)