Dafydd Alwyn Dart

Learn More
ATM and ATR are two related kinases essential for signalling DNA damage. Although ATM is thought to be the principle kinase responsible for signalling ionising radiation (IR)-induced DNA damage, ATR also contributes to signalling this form of genotoxic stress. However, the molecular basis of differential ATM and ATR activation in response to IR remains(More)
Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required(More)
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication(More)
Progression of prostate cancer is highly dependent upon the androgen receptor pathway, such that knowledge of androgen-regulated proteins is vital to understand and combat this disease. Using a proteomic screen, we found the RNA-binding protein FUS/TLS (Fused in Ewing's Sarcoma/Translocated in Liposarcoma) to be downregulated in response to androgen. FUS(More)
Since they were first described in the 1990s, circulating microRNAs (miRNAs) have provided an active and rapidly evolving area of current research that has the potential to transform cancer diagnostics and therapeutics. In particular, miRNAs could provide potential new biomarkers for prostate cancer, the most common cause of cancer in UK men. Current(More)
Anti-androgens used in prostate cancer therapy inhibit AR (androgen receptor) activity via largely unknown mechanisms. Although initially successful in most cases, they eventually fail and the disease progresses. We need to elucidate how anti-androgens work to understand why they fail, and prolong their effects or design further therapies. Using a cellular(More)
Current hormonal therapies for prostate cancer are effective initially, but inevitably tumours progress to an advanced, metastatic stage, often referred to as 'androgen independent'. However, the androgen receptor (AR) signalling pathway is still key for their growth. It is speculated that tumours escape hormonal control via reduction in corepressor(More)
MicroRNAs (miRs) play an important role in the development of many complex human diseases and may have tumour suppressor or oncogenic (oncomir) properties. Prostate cancer is initially an androgen-driven disease, and androgen receptor (AR) remains a key driver of growth even in castration-resistant tumours. However, AR-mediated oncomiR pathways remain to be(More)
Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic "ARE-Luc" mouse,(More)
Hormones are key drivers of cancer development. To date, interest has largely been focussed on the classical model of hormonal gene regulation, but there is increasing evidence for a role of hormone signalling pathways in post-translational regulation of gene expression. In particular, a complex and dynamic network of bi-directional interactions with(More)