Learn More
The proteins encoded by polar-localized mRNAs play an important role in cell fate specification along the anteroposterior axis of the Drosophila embryo. The only maternally synthesized mRNA known previously to be localized to the anterior cortex of both the oocyte and the early embryo is the bicoid mRNA whose localization is required to generate a(More)
Over twenty distinct families of long terminal direct repeat (LTR)-containing retrotransposons have been identified in Drosophila melanogaster. While there have been extensive analyses of retrotransposon transcription in cultured cells, there have been few studies of the spatial expression of retrotransposons during normal development. Here we report a(More)
We present a simple method to detect pathogenicity islands and anomalous gene clusters in bacterial genomes. The method uses iterative discriminant analysis to define genomic regions that deviate most from the rest of the genome in three compositional criteria: G+C content, dinucleotide frequency and codon usage. Using this method, we identify many(More)
Cytoplasmic mRNA localization is one method by which protein production is restricted to a particular intracellular site. We report here a novel mechanism for localization of transcripts encoding distinct protein isoforms to different destinations. Alternative processing of transcripts produced in the Drosophila ovary by the hu-li tai shao (hts) locus(More)
We describe the construction and use of two classes of cDNA cloning vectors. The first class comprises the lambda EXLX(+) and lambda EXLX(-) vectors that can be used for the expression in Escherichia coli of proteins encoded by cDNA inserts. This is achieved by the fusion of cDNA open reading frames to the T7 gene 10 promoter and protein-coding sequences.(More)
The eukaryotic cell is partitioned by membranes into spatially and functionally discrete subcellular organelles. In addition, the cytoplasm itself is partitioned into discrete subregions that carry out specific functions. Such compartmentation can be achieved by localizing proteins and RNAs to different subcellular regions. This review will focus on(More)
Hsp83 is the Drosophila homolog of the mammalian Hsp90 family of regulatory molecular chaperones. We show that maternally synthesized Hsp83 transcripts are localized to the posterior pole of the early Drosophila embryo by a novel mechanism involving a combination of generalized RNA degradation and local protection at the posterior. This protection of Hsp83(More)
In a molecular screen for polar-localized RNAs in Drosophila, we identified the mitochondrially encoded 16S large ribosomal RNA (16S RNA) as an RNA that is highly concentrated at the posterior pole of early embryos. This high posterior accumulation decreases sharply during the first hour of embryogenesis and reaches the uniform level found throughout the(More)
The hypothesis that synonymous codon usage is related to protein three-dimensional structure is examined by investigating the correlation between synonymous codon usage and protein secondary structure. All except two codons in E. coli show the same secondary structural preference for alpha-helix, beta-strand or coil as that of amino acids to be encoded by(More)
We develop a systematic algorithm for discovering network of regulatory modules, which identifies regulatory modules and their regulation program by integrating genome-wide location and expression data. Unlike previous approaches [Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Proc. Natl. Acad. Sci. USA 95, 14863-14868; Tavazoie, S.,(More)