Dafna Singer-Lahat

Learn More
Complementary DNAs encoding three novel and distinct beta subunits (CaB2a, CaB2b and CaB3) of the high voltage activated (L-type) calcium channel have been isolated from rabbit heart. Their deduced amino acid sequence is homologous to the beta subunit originally cloned from skeletal muscle (CaB1). CaB2a and CaB2b are splicing products of a common primary(More)
Presynaptic voltage-gated K(+) (Kv) channels play a physiological role in the regulation of transmitter release by virtue of their ability to shape presynaptic action potentials. However, the possibility of a direct interaction of these channels with the exocytotic apparatus has never been examined. We report the existence of a physical interaction in brain(More)
Recently we suggested that direct interactions between voltage-gated K(+) channels and proteins of the exocytotic machinery, such as those observed between the Kv1.1/Kvbeta channel, syntaxin 1A, and SNAP-25 may be involved in neurotransmitter release. Furthermore, we demonstrated that the direct interaction with syntaxin 1A enhances the fast inactivation of(More)
Previously we suggested that interaction between voltage-gated K+ channels and protein components of the exocytotic machinery regulated transmitter release. This study concerns the interaction between the Kv2.1 channel, the prevalent delayed rectifier K+ channel in neuroendocrine and endocrine cells, and syntaxin 1A and SNAP-25. We recently showed in islet(More)
Modulation of fast-inactivating voltage-gated K+ channels can produce plastic changes in neuronal signaling. Previously, we showed that the voltage-dependent K+ channel composed of brain Kv1.1 and Kvbeta1.1 subunits (alpha(beta) channel) gives rise to a current that has a fast-inactivating and a sustained component; the proportion of the fast-inactivating(More)
Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux. Here, we show that Kv2.1-induced facilitation of release is not restricted to neuroendocrine(More)
Voltage-gated ion channels are well characterized for their function in excitability signals. Accumulating studies, however, have established an ion-independent function for the major classes of ion channels in cellular signaling. During the last few years we established a novel role for Kv2.1, a voltage-gated potassium (Kv) channel, classically known for(More)
Enhancement of cardiac L-type Ca2+ channel activity by norepinephrine via phosphorylation by protein kinase A (PKA) underlines the positive inotropic effect of this transmitter and is a classical example of an ion channel modulation. However, it is not clear whether the channel protein itself (and which subunit) is a substrate for PKA. We have expressed(More)
K(+) efflux through voltage-gated K(+) (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca(2+) influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle(More)
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit(More)