Dafeng Zhou

Learn More
This paper presents a new carbon nanotube transistor (CNT) modelling technique which is based on an efficient numerical piece-wise non-linear approximation of the non-equilibrium mobile charge density. The technique facilitates the solution of the self-consistent voltage equation in a carbon nanotube such that the CNT drain-source current evaluation is(More)
Our study aimed to produce the commercially promising platform chemical 3-hydroxypropionic acid (3-HP) via the propionyl-CoA pathway in genetically engineered Escherichia coli. Recombinant E. coli Ec-P overexpressing propionyl-CoA dehydrogenase (PACD, encoded by the pacd gene from Candida rugosa) under the T7 promoter produced 1.33 mM of 3-HP in a shake(More)
—This paper introduces a novel numerical carbon nanotube transistor (CNT) modelling approach which brings in a flexible and efficient cubic spline non-linear approximation of the non-equilibrium mobile charge density. The spline algorithm creates a rapid and accurate solution of the numerical relationship between the charge density and the self-consistent(More)
Recently proposed circuit-level models of carbon nanotube transistor (CNT) for SPICE-like simulators suffer from numerical complexities as they rely on numerical evaluation of integrals or internal Newton-Raphson iterations to find solutions of non-linear dependencies or both. Recently an approach has been proposed which eliminates the need for numerical(More)
—This paper presents the algorithms of an implementation of a numerically efficient carbon nanotube transistor (CNT) model in HSPICE. The model is derived from cubic spline non-linear approximation of the non-equilibrium mobile charge density. The spline algorithm exploits a rapid and accurate solution of the numerical relationship between the charge(More)
  • 1