Dae Sung Yoon

Learn More
We studied the dynamical response of a nanomechanical resonator to biomolecular (e.g. DNA) adsorptions on a resonator's surface by using theoretical model, which considers the Hamiltonian H such that the potential energy consists of elastic bending energy of a resonator and the potential energy for biomolecular interactions. It was shown that the resonant(More)
We present a novel dielectrophoretic technique that can be used to characterize molecular interactions inside a microfluidic device. Our approach allows functionalized beads which are initially at rest on a functionalized surface to be pulled away from the surface by the dielectrophoretic force acting on the beads. As a result, the interaction between the(More)
Characterization and control of proteolysis of peptides by specific cellular protease is a priori requisite for effective drug discovery. Here, we report the nanomechanical, in situ monitoring of proteolysis of peptide chain attributed to protease (Cathepsin B) by using a resonant nanomechanical microcantilever immersed in a liquid. Specifically, the(More)
The simultaneous investigation of a large number of events with different types of intermolecular interactions, from nonequilibrium high-force pulling assays to quasi-equilibrium unbinding events in the same environment, can be very important for fully understanding intermolecular bond-rupture mechanisms. Here, we describe a novel dielectrophoretic force(More)
PURPOSE Single incision laparoscopic cholecystectomy (SILC) is a minimally invasive surgery that is growing rapidly among surgical procedures. However, there is no standard method for SILC. Therefore, we evaluated the adequacy and feasibility of SILC using Konyang Standard Method. METHODS We retrospectively reviewed our series of 307 SILCs performed(More)
We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered(More)
PURPOSE Mutations in BRCA genes are the main cause of hereditary breast cancer in Korea. The aim of this study was to investigate the characteristics of breast cancers involving BRCA1 (BRCA1 group) and BRCA2 (BRCA2 group) mutations. METHODS We retrospectively reviewed the medical records of patients with BRCA1 (BRCA1 group) or BRCA2 (BRCA2 group) mutation(More)
PURPOSE Laparoscopic totally extraperitoneal (TEP) herniorrhaphy has been recognized as a treatment option for inguinal hernia. The objective of this study was to clarify the learning curve for laparoscopic TEP herniorrhaphy using the moving average method. METHODS A total of 90 patients underwent laparoscopic TEP herniorrhaphy by a single surgeon between(More)
In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a(More)
The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different(More)