Learn More
SIZ1 is a SUMO E3 ligase that facilitates conjugation of SUMO to protein substrates. siz1-2 and siz1-3 T-DNA insertion alleles that caused freezing and chilling sensitivities were complemented genetically by expressing SIZ1, indicating that the SIZ1 is a controller of low temperature adaptation in plants. Cold-induced expression of CBF/DREB1, particularly(More)
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function(More)
Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity(More)
Histone modification in chromatin is one of the key control points in gene regulation in eukaryotic cells. Protein complexes composed of histone acetyltransferase or deacetylase, WD40 repeat protein, and many other components have been implicated in this process. Here, we report the identification and functional characterization of HOS15, a WD40-repeat(More)
Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free(More)
The Arabidopsis thaliana YUCCA family of flavin monooxygenase proteins catalyses a rate-limiting step in de novo auxin biosynthesis. A YUCCA6 activation mutant, yuc6-1D, has been shown to contain an elevated free IAA level and to display typical high-auxin phenotypes. It is reported here that Arabidopsis plants over-expressing YUCCA6, such as the yuc6-1D(More)
Loss-of-function siz1 mutations caused early flowering under short days. siz1 plants have elevated salicylic acid (SA) levels, which are restored to wild-type levels by expressing nahG, bacterial salicylate hydroxylase. The early flowering of siz1 was suppressed by expressing nahG, indicating that SIZ1 represses the transition to flowering mainly through(More)
A mutation of AtSOS1 (Salt Overly Sensitive 1), a plasma membrane Na(+)/H(+)-antiporter in Arabidopsis thaliana, leads to a salt-sensitive phenotype accompanied by the death of root cells under salt stress. Intracellular events and changes in gene expression were compared during a non-lethal salt stress between the wild type and a representative SOS1(More)
The plasma membrane Na + /H +-antiporter salt overly sensitive1 (SOS1) from the halophytic Arabidopsis-relative Thel-lungiella halophila (ThSOS1) shows conserved sequence and domain structure with the orthologous genes from Arabidopsis thaliana and other plants. When expression of ThSOS1 was reduced by RNA interference (RNAi), pronounced characteristics of(More)
GIGANTEA (GI) was originally identified by a late-flowering mutant in Arabidopsis, but subsequently has been shown to act in circadian period determination, light inhibition of hypocotyl elongation, and responses to multiple abiotic stresses, including tolerance to high salt and cold (freezing) temperature. Genetic mapping and analysis of families of(More)