Learn More
DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p≤0.05) compared to suspension cells, including several genes(More)
The quorum-sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was found to inhibit the swarming motility of Escherichia coli completely at 13 microg cm-2 (also at 20 microg ml-1) but did not inhibit its growth rate at 13-52 microg cm-2 or from 20 to 100 microg ml-1. Swimming was not inhibited by(More)
The quorum sensing disrupter (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone (furanone) of the alga Delisea pulchra was previously found by us (Environ Microbiol 3:731-736, 2001) to inhibit quorum sensing in Escherichia coli via autoinducer-2 (AI-2, produced by LuxS). In this study, DNA microarrays were used to study the genetic basis of this natural(More)
Siderophore synthesis of Pseudomonas putida F1 was found to be regulated by quorum sensing since normalized siderophore production (per cell) increased 4.2-fold with cell density after the cells entered middle exponential phase; similarly, normalized siderophore concentrations in Pseudomonas aeruginosa JB2 increased 28-fold, and a 5.5-fold increase was seen(More)
The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill "superbugs" emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs), a growing class of natural and synthetic(More)
Halogenated furanones, a group of natural products initially isolated from marine red algae, are known to inhibit bacterial biofilm formation, swarming, and quorum sensing. However, their molecular targets and the precise mode of action remain elusive. Herein, we show that a naturally occurring brominated furanone covalently modifies and inactivates LuxS(More)
Five independent DNA microarray experiments were used to study the gene expression profile of a 5-day Bacillus subtilis air-liquid interface biofilm relative to planktonic cells. Both wild-type B. subtilis and its sporulation mutant (DeltaspoIIGB::erm) were investigated to discern the important biofilm genes (in the presence and absence of sporulation). The(More)
A collection of structurally closely related furanones was synthesized to identify the most important structural elements in brominated furanones for inhibiting the formation of bacterial biofilms. The results suggest that a conjugated exocyclic vinyl bromide on the furanone ring is the most important structural element for the non-toxic but inhibition(More)
Quorum sensing via autoinducer-2 (AI-2) has been identified in different strains, including those from Escherichia, Vibrio, Streptococcus, and Bacillus species, and previous studies have suggested the existence of additional quorum-sensing signals working in the stationary phase of Escherichia coli cultures. To investigate the presence and global effect of(More)
AIMS (5Z)-4-Bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone(furanone) of the marine alga Delisea pulchra was synthesized, and its inhibition of swarming motility and biofilm formation of Bacillus subtilis was investigated. METHODS AND RESULTS Furanone was found to inhibit both the growth of B. subtilis and its swarming motility in a(More)